首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   70篇
  2022年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   8篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   1篇
  2001年   7篇
  2000年   13篇
  1999年   12篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   1篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   5篇
  1978年   1篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1969年   4篇
  1968年   3篇
  1967年   3篇
  1965年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
71.
K Shiba  K Ito  T Yura    D P Cerretti 《The EMBO journal》1984,3(3):631-635
We describe the properties of a temperature-sensitive mutant, ts24, of Escherichia coli. The mutant has a conditional defect in export of periplasmic and outer membrane proteins. At 42 degrees C, precursor forms of these proteins accumulate within the cell where they are protected from digestion by externally added trypsin. The accumulated precursors are secreted and processed very slowly at 42 degrees C. The mutation is complemented by expression of the wild-type secY (or prlA) gene, which has been cloned into a plasmid vector from the promoter-distal part of the spc ribosomal protein operon. The mutant has a single base change in the middle of the secY gene, which would result in the replacement of a glycine residue by aspartic acid in the protein product. These results demonstrate that the gene secY (prlA) is essential for protein translocation across the E. coli cytoplasmic membrane.  相似文献   
72.
73.
Summary We have isolated Escherichia coli F mutants which, when mated with either Hfr or F, can form stable mating aggregates well but produce transconjugants with reduced frequencies. Selection procedure and other tests rule out the possibility that they are Rec strains. These mutants can be classified into two types: type I mutants can induce conjugal DNA replication in the donor, yet form transconjugants poorly; whereas, type II mutants induce conjugal DNA replication with poor efficiencies in the donor. Further tests indicate that type I mutants are very sensitive to lethal zygosis and their membranes, both inner and outer, show alterations in protein composition, whereas type II mutants are insensitive to lethal zygosis, and have an obvious alteration in the protein composition of their outer membrane. These results suggest that type I is defective in transconjugant formation primarily due to a change in the inner membrane, whereas type II is defective in generating a mating signal, which induces donor conjugal DNA replication, due to an alteration in the outer membrane.  相似文献   
74.
75.
76.
77.
M Ishiai  C Wada  Y Kawasaki    T Yura 《Journal of bacteriology》1992,174(17):5597-5603
A subset of Escherichia coli heat shock proteins, DnaJ, DnaK, and GrpE, is required for mini-F plasmid replication, presumably at the step of functioning of the RepE initiator protein. We have isolated and characterized mini-F plasmid mutants that acquired the ability to replicate in the Escherichia coli dnaJ259. The mutant plasmids were found to replicate in any of dnaJ, dnaK, and grpE mutant hosts tested. In each case, the majority of the mutant plasmids carried a unique amino acid alteration in a localized region of repE coding sequence and showed an increased copy number, whereas the minority contained a common single base change (C to T) in the promoter/operator region and produced an increased amount of RepE. All RepE proteins with altered residues (between 92 and 134) exhibited increased initiator activities (hyperactive), and many showed reduced repressor activities as well, indicating that this region is important for the both major functions of RepE protein. These results together with evidence reported elsewhere indicate that the subset of heat shock proteins serves to activate RepE protein prior to or during its binding to the replication origin and that the mutant RepE proteins are active even in their absence. We also found that a C-terminal lesion (repE602) reduces the initiator activity particularly of some hyperactive mutant RepE proteins but does not affect the repressor activity. This finding suggests a functional interaction between the central and C-terminal regions of RepE in carrying out the initiator function.  相似文献   
78.
79.
A minicell-producing strain of E.coli carrying an F′ factor, KLF10-1, forms minicells that contain plasmid but not chromosomal DNA. These minicells were found to synthesize two polypeptides corresponding precisely to the β and β′ subunits of RNA polymerase in SDS-polyacrylamide gel electrophoresis. In contrast, minicells obtained from an isogenic strain carrying F13-1 do not synthesize these proteins under similar conditions. These results indicate that the structural genes for the β′ as well as β subunits of the polymerase are located on the chromosomal segment (78 to 81 min on the standard genetic map of E.coli) carried by KLF10-1.  相似文献   
80.
The gene determining the structure of a major outer membrane protein of Escherichia coli, protein Ia, has been located between serC and pyrD, at the min 21 region of the linkage map. This is based on the isolation and characterization of E. coli-Salmonella typhimurium intergeneric hybrids as well as analyses of a mutation (ompF2) affecting the formation of protein Ia. When the serC region of the S. typhimurium chromosome was transduced by phage P1 into E. coli, two classes of transductants were obtained; one produced protein Ia like the parental strain of E. coli, whereas the other produced not protein Ia but a pair of outer membrane proteins structurally related to 35K protein, one of the major outer membrane proteins of S. typhimurium. Furthermore, a strain of S. typhimurium harboring an F' plasmid which carries the ompF region of the E. coli chromosome was found to produce a protein indistinguishable from protein Ia, beside the outer membrane proteins characteristic to the parental Salmonella strain. These results suggest that the structural genes for protein Ia (E. coli) and for 35K protein (S. typhimurium) are homologous to each other and are located at the ompF region of the respective chromosome. The bearing of these findings on the genetic control of protein Ia formation is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号