首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19630篇
  免费   1438篇
  国内免费   1601篇
  22669篇
  2024年   57篇
  2023年   348篇
  2022年   679篇
  2021年   1132篇
  2020年   707篇
  2019年   937篇
  2018年   825篇
  2017年   575篇
  2016年   900篇
  2015年   1186篇
  2014年   1483篇
  2013年   1550篇
  2012年   1846篇
  2011年   1595篇
  2010年   1016篇
  2009年   864篇
  2008年   961篇
  2007年   830篇
  2006年   676篇
  2005年   596篇
  2004年   494篇
  2003年   445篇
  2002年   403篇
  2001年   287篇
  2000年   300篇
  1999年   311篇
  1998年   199篇
  1997年   207篇
  1996年   192篇
  1995年   157篇
  1994年   143篇
  1993年   100篇
  1992年   142篇
  1991年   117篇
  1990年   102篇
  1989年   77篇
  1988年   53篇
  1987年   31篇
  1986年   30篇
  1985年   41篇
  1984年   19篇
  1983年   24篇
  1982年   12篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
53.
The role of Asp-212 in the proton pumping mechanism of bacteriorhodopsin (bR) has been studied by a combination of site-directed mutagenesis and Fourier transform infrared difference spectroscopy. Difference spectra were recorded at low temperature for the bR----K and bR----M photoreactions of the mutants Asp-212----Glu, Asp-212----Asn, and Asp-212----Ala. Despite an increased proportion of the 13-cis form of bR (normally associated with dark adaptation), all of the mutants exhibited a light-adapted form containing as a principal component the normal all-trans retinal chromophore. The absence of a shift in the retinal C = C stretching frequency in these mutants indicates that Asp-212 is not a major determinant of the visible absorption wavelength maximum in light-adapted bR. It is unlikely that Asp-212 is the acceptor group for the Schiff base proton since both the Asp-212----Glu and Asp-212----Ala mutants formed an M intermediate. All of the Asp-212 mutants were missing a Fourier transform infrared difference band that had been assigned previously to protonation changes of Tyr-185. These results are discussed in terms of a model in which Tyr-185 and Asp-212 form a polarizable hydrogen bond and are positioned near the C13-Schiff base portion of the chromophore. These 2 residues may be involved in stabilizing the relative orientation of the F and G helices and isomerizing the retinal in a regioselective manner about the C13 = C14 double bond.  相似文献   
54.
看家基因Actin常被用作定量、半定量PCR试验的内参基因.为研究其他基因在南美蟛蜞菊响应环境变化的表达调控机制,根据GenBank上已登录的肌动蛋白基因(Actin)的同源核苷酸保守序列,设计特异性引物,利用RT-PCR的方法克隆获得了南美蟛蜞菊Actin基因的全长序列,并将该序列命名为WtAct.序列分析结果表明W...  相似文献   
55.
Predicting species abundance is one of the most fundamental pursuits of ecology. Combining the information encoded in functional traits and metacommunities provides a new perspective to predict the abundance of species in communities. We applied a community assembly via trait selection model to predict quadrat-scale species abundances using functional trait variation on ontogenetic stages and metacommunity information for over 490 plant species in a subtropical forest and a lowland tropical forest in Yunnan, China. The relative importance of trait-based selection, mass effects, and stochasticity in shaping local species abundances is evaluated using different null models. We found both mass effects and trait selection contribute to local abundance patterns. Trait selection was detectable at all studied spatial scales (0.04–1 ha), with its strength stronger at larger scales and in the subtropical forest. In contrast, the importance of stochasticity decreased with spatial scale. A significant mass effect of the metacommunity was observed at small spatial scales. Our results indicate that tree community assembly is primarily driven by ontogenetic traits and metacommunity effects. Our findings also demonstrate that including ontogenetic trait variation into predictive frameworks allows ecologists to infer ecological mechanisms operating in community assembly at the individual level.  相似文献   
56.
【目的】对进口竹荚鱼中分离的一株病原菌S1-2进行鉴定,并在大肠杆菌中表达其鞭毛蛋白。【方法】采用全自动微生物鉴定仪和革兰氏阳性菌鉴定卡进行生理生化反应测试,利用iap基因实时荧光PCR特异性扩增检测病原菌。通过PCR技术扩增病原菌S1-2的鞭毛蛋白flaA基因,克隆筛选和测序鉴定后,构建该基因的原核表达质粒pET22b-flaA,镍柱法纯化表达产物,通过免疫印迹鉴定其免疫原性。【结果】分离病原菌为革兰氏阳性菌,生理生化特征与单核细胞增生李斯特菌(Listeria monocytogenes)的相似性为99%,协同溶血实验在靠近金黄色葡萄球菌的接种端溶血增强。SDS-PAGE结果表明融合表达产物分子量约为32 kD,Western blot结果表明重组表达的鞭毛蛋白具有免疫原性。【结论】flaA基因的原核表达为制备单核细胞增生李斯特菌的单克隆抗体及其检测方法的建立奠定了基础。  相似文献   
57.
Oxidized high-density lipoprotein (oxHDL) reduces the ability of cells to mediate reverse cholesterol transport and also shows atherogenic properties. Palmitoylation of cluster of differentiation 36 (CD36), an important receptor mediating lipoprotein uptake, is required for fatty acid endocytosis. However, the relationship between oxHDL and CD36 has not been described in mechanistic detail. Here, we demonstrate using acyl-biotin exchange analysis that oxHDL activates CD36 by increasing CD36 palmitoylation, which promotes efficient uptake in macrophages. This modification increased CD36 incorporation into plasma lipid rafts and activated downstream signaling mediators, such as Lyn, Fyn, and c-Jun N-terminal kinase, which elicited enhanced oxHDL uptake and foam cell formation. Furthermore, blocking CD36 palmitoylation with the pharmacological inhibitor 2-bromopalmitate decreased cell surface translocation and lowered oxHDL uptake in oxHDL-treated macrophages. We verified these results by transfecting oxHDL-induced macrophages with vectors expressing wildtype or mutant CD36 (mCD36) in which the cytoplasmic palmitoylated cysteine residues were replaced. We show that cells containing mCD36 exhibited less palmitoylated CD36, disrupted plasma membrane trafficking, and reduced protein stability. Moreover, in ApoE−/−CD36−/− mice, lipid accumulation at the aortic root in mice receiving the mCD36 vector was decreased, suggesting that CD36 palmitoylation is responsible for lipid uptake in vivo. Finally, our data indicated that palmitoylation of CD36 was dependent on DHHC6 (Asp-His-His-Cys) acyltransferase and its cofactor selenoprotein K, which increased the CD36/caveolin-1 interaction and membrane targeting in cells exposed to oxHDL. Altogether, our study uncovers a causal link between oxHDL and CD36 palmitoylation and provides insight into foam cell formation and atherogenesis.  相似文献   
58.
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo.Supplementary key words: macrophage, inflammation, lipid droplet, nanoparticle delivery, in vivo imaging, fatty acid analog, bone marrow, systemic inflammation, lipid trafficking, biomarker

Macrophages, a type of immune cells, almost reside in all tissues of body, from the skin to the bone marrow (BM) (1). Macrophages have remarkable plasticity, and they can be activated into specific subtypes by modifying their physiology and functions in response to local environmental cues. Activated macrophages are commonly divided into proinflammatory killing subtype and anti-inflammatory repairing subtype. Proinflammatory macrophages responding to bacteria, IFN-γ, and lipopolysaccharide (LPS) are involved in host defense and inflammation, whereas anti-inflammatory macrophages responding to interleukin-4 (IL-4), IL-10, and IL-13 play a pivotal role in tissue homeostasis and remodeling (2). Increasing evidence indicates that the reactivation of macrophages toward proinflammatory states under diverse kinds of stress is correlated with a plethora of inflammatory diseases, such as atherosclerosis, diabetes, obesity, rheumatoid arthritis, neurodegeneration, and BM failure syndromes (3, 4). Thus, characterization of macrophage activation status and the underlying molecular mechanism in situ will help elucidate their functions in these diseases; however, in vivo analysis of the macrophage activation status in their native multicellular microenvironment is challenging.Although lipid droplets (LDs) have been initially described as intracellular fat storage organelles in adipocytes, increasing studies indicate that myeloid cells also form LDs under inflammation and stress (5, 6). Macrophages, as the effector cells of innate immunity, are found to form LDs to support their host defense when exposed to pathogens, such as parasites, bacteria, and viruses (7, 8, 9, 10, 11). However, abnormal LD accumulation in tissue-resident macrophages correlates with the pathogenesis of various inflammatory diseases. For instance, foam cells in atherosclerotic lesions can maintain the local inflammatory response by secreting proinflammatory cytokines (12, 13, 14). Moreover, LD-accumulating microglia contribute to neurodegeneration by producing high levels of reactive oxygen species (ROS) and secreting proinflammatory cytokines (15). These findings indicate that LD accumulation might be a hallmark of macrophages with proinflammatory functions.In this study, based on the typical activation of in vitro BM-derived macrophages, we find that proinflammatory M(LPS + IFN-γ) macrophages are characterized by LD accumulation, whereas resting macrophages and anti-inflammatory M(IL-4) and M(IL-10) macrophages do not contain any LDs. These features also hold for Matrigel plug-recruited macrophages and tissue-resident macrophages in mice. These findings demonstrate that LD accumulation could serve as a morphological index to distinguish proinflammatory macrophages from others.It is feasible to distinguish LD-containing cells using imaging techniques, which has translational potential for identification of proinflammatory macrophages in vivo. However, current techniques for LD visualization are traditional in vitro staining method, and in vivo staining and imaging of LD in individual macrophages remains a challenge. Through nanocarrier screening, we selected the poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) as nanocarrier to deliver the lipophilic carbocyanine dye (DiIC18(5) solid (1,1''-dioctadecyl-3,3,3'',3''-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt) [DiD]) and lipid staining dye (C1-BODIPY 500/510-C12) into macrophages. Using these dual fluorescence-labeled PLGA NPs, we achieved in situ and in vivo functional identification of single macrophages in various tissues under systemic or local inflammatory stress. Collectively, this study establishes an efficient in vivo labeling and imaging system of intracellular LDs for phenotyping the activation status and functions of individual macrophages in their dynamic niche, which is pivotal for disease diagnosis and preclinical research.  相似文献   
59.
Cytokine storm and multi-organ failure are the main causes of SARS-CoV-2-related death. However, the origin of excessive damages caused by SARS-CoV-2 remains largely unknown. Here we show that the SARS-CoV-2 envelope (2-E) protein alone is able to cause acute respiratory distress syndrome (ARDS)-like damages in vitro and in vivo. 2-E proteins were found to form a type of pH-sensitive cation channels in bilayer lipid membranes. As observed in SARS-CoV-2-infected cells, heterologous expression of 2-E channels induced rapid cell death in various susceptible cell types and robust secretion of cytokines and chemokines in macrophages. Intravenous administration of purified 2-E protein into mice caused ARDS-like pathological damages in lung and spleen. A dominant negative mutation lowering 2-E channel activity attenuated cell death and SARS-CoV-2 production. Newly identified channel inhibitors exhibited potent anti-SARS-CoV-2 activity and excellent cell protective activity in vitro and these activities were positively correlated with inhibition of 2-E channel. Importantly, prophylactic and therapeutic administration of the channel inhibitor effectively reduced both the viral load and secretion of inflammation cytokines in lungs of SARS-CoV-2-infected transgenic mice expressing human angiotensin-converting enzyme 2 (hACE-2). Our study supports that 2-E is a promising drug target against SARS-CoV-2.Subject terms: Cell death, Molecular biology  相似文献   
60.
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号