首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1624篇
  免费   122篇
  国内免费   116篇
  1862篇
  2024年   7篇
  2023年   23篇
  2022年   43篇
  2021年   81篇
  2020年   58篇
  2019年   60篇
  2018年   49篇
  2017年   46篇
  2016年   70篇
  2015年   98篇
  2014年   110篇
  2013年   120篇
  2012年   115篇
  2011年   144篇
  2010年   80篇
  2009年   70篇
  2008年   90篇
  2007年   74篇
  2006年   91篇
  2005年   59篇
  2004年   63篇
  2003年   34篇
  2002年   35篇
  2001年   20篇
  2000年   17篇
  1999年   29篇
  1998年   22篇
  1997年   25篇
  1996年   26篇
  1995年   19篇
  1994年   13篇
  1993年   9篇
  1992年   10篇
  1991年   9篇
  1990年   4篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1862条查询结果,搜索用时 15 毫秒
81.
82.
马铃薯人工种子的研究   总被引:5,自引:0,他引:5  
唐巍  欧阳藩 《生物技术》1996,6(5):11-13
本研究以虎头(H)、克四(K)和Favorita(F)三个品种的马铃薯不定芽在液体培养条件下诱导生成的微型薯为试材,经筛选后获得的大小一致的微型薯经过适度的低温处理后,用4%的海藻酸钠和2%的氯化钙溶液,在附加一定的植物激素条件下,进行人。种皮包埋形成人工种子。在无菌条件下,三个品种的人工种子萌发率均达90%以上。在土壤中,人工种子萌发率可达60%以上,萌发的人工种子中80%能够形成生长发育正常的完整植株。  相似文献   
83.
白喉毒素类免疫毒素研究进展   总被引:8,自引:0,他引:8  
白喉毒素类免疫毒素是将缺失天然受体结合活性的白喉毒素片段或突变体与抗体或细胞因子偶联而得到的一类新型导向药物,它可特异性识别并结合靶细胞,通过发挥其ADP核糖基化活性而抑制细胞蛋白合成,引发细胞凋亡。由于白喉毒素类免疫毒素能高效、特异地杀伤特定靶细胞,而使其在肿瘤等疾病的药物开发中暂露头角。综述了基于白喉毒素的免疫毒素的研制现状与应用前景 。  相似文献   
84.
DNA-methyltransferase (DNMT)-3A plays a crucial role in embryonic development and aberrant DNA methylation in carcinogenesis. Polymorphisms of the DNMT3A gene may influence its enzymatic activity and its contribution to susceptibility to cancer. This study evaluated the association of DNMT3A rs36012910 A>G with susceptibility to gastric cancer (GC) in a Chinese population. Genomic DNA was extracted from samples taken from 340 patients with GC and 251 healthy control subjects. The genotype frequency of DNMT3A rs36012910 A>G in all subjects was detected by polymerase chain reaction–restriction fragment length polymorphism and confirmed by sequencing. Stratification analyses were used to study subgroups by age and gender and to evaluate the association of rs36012910 A>G polymorphism with genetic susceptibility to GC. All patients and control individuals were successfully genotyped for the DNMT3A rs36012910 A>G polymorphism. The frequency of DNMT3A rs36012910 allele G is 3.39?% in healthy individuals and 7.78?% in GC patients, respectively. The rs36012910 AG genotype was significantly more common in the GC group than in the controls, although the rs36012910 GG genotype was only one case in GC patients. Further stratification indicated that AG+GG genotypes were associated with susceptibility to GC in males older than 60, but this polymorphism has no significant association with GC susceptibility in females. Male individuals who carried AG+GG genotypes had a 2.362-fold increased risk of GC compared to those who carried the AA genotype. The rs36012910 allele G was associated with an increased risk of GC compared to the rs36012910 allele A. This is the first report to investigate the distribution and evaluate the association of a rare SNP in DNMT3A with genetic susceptibility to GC. DNMT3A rs36012910 A>G might become a potential biomarker for use in GC prediction, although further studies in larger groups and different populations are needed for confirmation.  相似文献   
85.
ULK1 (unc-51 like autophagy activating kinase 1) is well known to be required to initiate the macroautophagy/autophagy process, and thus activation of ULK1-modulating autophagy/autophagy-associated cell death (ACD) may be a possible therapeutic strategy in triple negative breast cancer (TNBC). Here, our integrated The Cancer Genome Atlas (TCGA) data set, tissue microarray-based analyses and multiple biologic evaluations together demonstrate a new small-molecule activator of ULK1 for better understanding of how ULK1, the mammalian homolog of yeast Atg1, as a potential drug target can regulate ACD by the ULK complex (ULK1-ATG13-RB1CC1/FIP200-ATG101), as well as other possible ULK1 interactors, including ATF3, RAD21 and CASP3/caspase3 in TNBC. Moreover, such new inspiring findings may help us discover that this activator of ULK1 (LYN-1604) with its anti-tumor activity and ACD-modulating mechanisms can be further exploited as a small-molecule candidate drug for future TNBC therapy.  相似文献   
86.

Objectives

Caspases, a family of cysteine proteases with unique substrate specificities, contribute to apoptosis, whereas autophagy‐related genes (ATGs) regulate cytoprotective autophagy or autophagic cell death in cancer. Accumulating evidence has recently revealed underlying mechanisms of apoptosis and autophagy; however, their intricate relationships still remain to be clarified. Identification of caspase/ATG switches between apoptosis and autophagy may address this problem.

Materials and methods

Identification of caspase/ATG switches was carried out using a series of elegant systems biology & bioinformatics approaches, such as network construction, hub protein identification, microarray analyses, targeted microRNA prediction and molecular docking.

Results

We computationally constructed the global human network from several online databases and further modified it into the basic caspase/ATG network. On the basis of apoptotic or autophagic gene differential expressions, we identified three molecular switches [including androgen receptor, serine/threonine‐protein kinase PAK‐1 (PAK‐1) and mitogen‐activated protein kinase‐3 (MAPK‐3)] between certain caspases and ATGs in human breast carcinoma MCF‐7 cells. Subsequently, we identified microRNAs (miRNAs) able to target androgen receptor, PAK‐1 and MAPK‐3, respectively. Ultimately, we screened a range of small molecule compounds from DrugBank, able to target the three above‐mentioned molecular switches in breast cancer cells.

Conclusions

We have systematically identified novel caspase/ATG switches involved in miRNA regulation, and predicted targeted anti‐cancer drugs. These findings may uncover intricate relationships between apoptosis and autophagy and thus provide further new clues towards possible cancer drug discovery.
  相似文献   
87.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   
88.
The Hedgehog (Hh) signaling pathway plays an instructional role during development, and is frequently activated in cancer. Ligand-induced pathway activation requires signaling by the transmembrane protein Smoothened (Smo), a member of the G-protein-coupled receptor (GPCR) superfamily. The extracellular (EC) loops of canonical GPCRs harbor cysteine residues that engage in disulfide bonds, affecting active and inactive signaling states through regulating receptor conformation, dimerization and/or ligand binding. Although a functional importance for cysteines localized to the N-terminal extracellular cysteine-rich domain has been described, a functional role for a set of conserved cysteines in the EC loops of Smo has not yet been established. In this study, we mutated each of the conserved EC cysteines, and tested for effects on Hh signal transduction. Cysteine mutagenesis reveals that previously uncharacterized functional roles exist for Smo EC1 and EC2. We provide in vitro and in vivo evidence that EC1 cysteine mutation induces significant Hh-independent Smo signaling, triggering a level of pathway activation similar to that of a maximal Hh response in Drosophila and mammalian systems. Furthermore, we show that a single amino acid change in EC2 attenuates Hh-induced Smo signaling, whereas deletion of the central region of EC2 renders Smo fully active, suggesting that the conformation of EC2 is crucial for regulated Smo activity. Taken together, these findings are consistent with loop cysteines engaging in disulfide bonds that facilitate a Smo conformation that is silent in the absence of Hh, but can transition to a fully active state in response to ligand.  相似文献   
89.
90.
IL-22, an IL-10 family cytokine, is produced by different leukocyte subsets, including T cells, NK cells and lymphoid tissue inducer (LTi) cells. IL-22 mediates the crosstalk between leukocytes and tissue epithelia because its receptor is preferentially expressed on various tissue epithelial cells. IL-22 is essential for host defense against infections of extracellular pathogens, such as bacteria and yeasts, by eliciting various innate defensive mechanisms from tissue epithelial cells and promoting wound-healing responses. In autoimmune diseases, however, diverse tissue microenvironments and underlying pathogenic mechanisms may result in opposing contributions of IL-22 in disease progression. For example, in psoriasis, IL-22 can synergize with other proinflammatory cytokines to induce many of the pathogenic phenotypes from keratinocytes and exacerbate disease progression. In contrast, IL-22 plays a beneficial role in IBD by enhancing barrier integrity and epithelial innate immunity of intestinal tract.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号