首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   7篇
  国内免费   10篇
  109篇
  2023年   3篇
  2022年   7篇
  2021年   6篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   4篇
  2006年   7篇
  2005年   1篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1994年   3篇
排序方式: 共有109条查询结果,搜索用时 0 毫秒
11.
Interleukin (IL)-35 is a novel heterodimeric cytokine in the IL-12 family and is composed of two subunits: Epstein-Barr virus-induced gene 3 (EBI3) and IL-12p35. IL-35 is expressed in T regulatory (Treg) cells and contributes to the immune suppression function of these cells. In contrast, we found that both IL-35 subunits were expressed concurrently in most human cancer cell lines compared to normal cell lines. In addition, we found that TNF-α and IFN-γ stimulation led to increased IL-35 expression in human cancer cells. Furthermore, over-expression of IL-35 in human cancer cells suppressed cell growth in vitro, induced cell cycle arrest at the G1 phase, and mediated robust apoptosis induced by serum starvation, TNF-α, and IFN-γ stimulation through the up-regulation of Fas and concurrent down-regulation of cyclinD1, survivin, and Bcl-2 expression. In conclusion, our results reveal a novel functional role for IL-35 in suppressing cancer activity, inhibiting cancer cell growth, and increasing the apoptosis sensitivity of human cancer cells through the regulation of genes related to the cell cycle and apoptosis. Thus, this research provides new insights into IL-35 function and presents a possible target for the development of novel cancer therapies.  相似文献   
12.
Host cellular receptors play key roles in the determination of virus tropism and pathogenesis.However,little is known about SARS-CoV-2 host receptors with the e...  相似文献   
13.
The recovery of liver mass is mainly mediated by proliferation of hepatocytes after 2/3 partial hepatectomy (PH) in rats. Studying the gene expression profiles of hepatocytes after 2/3 PH will be helpful to investigate the molecular mechanisms of liver regeneration (LR). We report here the first application of weighted gene co-expression network analysis (WGCNA) to analyze the biological implications of gene expression changes associated with LR. WGCNA identifies 12 specific gene modules and some hub genes from hepatocytes genome-scale microarray data in rat LR. The results suggest that upregulated MCM5 may promote hepatocytes proliferation during LR; BCL3 may play an important role by activating or inhibiting NF-kB pathway; MAPK9 may play a permissible role in DNA replication by p38 MAPK inactivation in hepatocytes proliferation stage. Thus, WGCNA can provide novel insight into understanding the molecular mechanisms of LR.  相似文献   
14.
15.
16.
Long noncoding RNAs (lncRNAs) play important roles in the spatial and temporal regulation of muscle development and regeneration. Nevertheless, the determination of their biological functions and mechanisms underlying muscle regeneration remains challenging. Here, we identified a lncRNA named lncMREF (lncRNA muscle regeneration enhancement factor) as a conserved positive regulator of muscle regeneration among mice, pigs and humans. Functional studies demonstrated that lncMREF, which is mainly expressed in differentiated muscle satellite cells, promotes myogenic differentiation and muscle regeneration. Mechanistically, lncMREF interacts with Smarca5 to promote chromatin accessibility when muscle satellite cells are activated and start to differentiate, thereby facilitating genomic binding of p300/CBP/H3K27ac to upregulate the expression of myogenic regulators, such as MyoD and cell differentiation. Our results unravel a novel temporal-specific epigenetic regulation during muscle regeneration and reveal that lncMREF/Smarca5-mediated epigenetic programming is responsible for muscle cell differentiation, which provides new insights into the regulatory mechanism of muscle regeneration.  相似文献   
17.
Osteosarcoma (OS),the most common malignant bone tumor with high metastatic potential,frequently affects children and adolescents.Epidermal growth factor recept...  相似文献   
18.
The development of more and more new dermal substitutes requires a reliable and effective animal model to evaluate their safety and efficacy. In this study we constructed a novel animal model using co-transplantation of autologous epidermal sheets with dermal substitutes to repair full-thickness skin defects. Autologous epidermal sheets were obtained by digesting the basement membrane (BM) and dermal components from rat split-thickness skins in Dispase II solution (1.2 u/ml) at 4°C for 8, 10 and 12 h. H&E, immunohistochemical and live/dead staining showed that the epidermal sheet preserved an intact epidermis without any BM or dermal components, and a high percentage of viable cells (92.10±4.19%) and P63 positive cells (67.43±4.21%) under an optimized condition. Porcine acellular dermal matrixes were co-transplanted with the autologous epidermal sheets to repair full-thickness skin defects in Sprague-Dawley rats. The epidermal sheets survived and completely re-covered the wounds within 3 weeks. Histological staining showed that the newly formed stratified epidermis attached directly onto the dermal matrix. Inflammatory cell infiltration and vascularization of the dermal matrix were not significantly different from those in the subcutaneous implantation model. Collagen IV and laminin distributed continuously at the epidermis and dermal matrix junction 4 weeks after transplantation. Transmission electron microscopy further confirmed the presence of continuous lamina densa and hemidesmosome structures. This novel animal model can be used not only to observe the biocompatibility of dermal substitutes, but also to evaluate their effects on new epidermis and BM formation. Therefore, it is a simple and reliable model for evaluating the safety and efficacy of dermal substitutes.  相似文献   
19.
Binocular rivalry is a fascinating perceptual phenomenon that has been characterized extensively at the psychophysical level. However, the underlying neural mechanism remains poorly understood. In particular, the role of the early visual pathway remains controversial. In this study, we used voltage-sensitive dye imaging to measure the spatiotemporal activity patterns in cat area 18 evoked by dichoptic orthogonal grating stimuli. We found that after several seconds of monocular stimulation with an oriented grating, an orthogonal stimulus to the other eye evoked a reversal of the cortical response pattern, which may contribute to flash suppression in perception. Furthermore, after several seconds of rival binocular stimulation with unequal contrasts, transient increase in the contrast of the weak stimulus evoked a long-lasting cortical response. This transient-triggered response could contribute to the perceptual switch during binocular rivalry. Together, these results point to a significant contribution of early visual cortex to transient-triggered switch in perceptual dominance.  相似文献   
20.
The functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.g., metazoan HCN pacemaker cation channels and the plant K+ channel KAT1). In both types of CNBD channels, the S4 transmembrane helix of the voltage sensor domain (VSD) moves outward in response to depolarization. This movement opens depolarization-gated channels and closes hyperpolarization-gated channels. External divalent cations and protons prevent or slow movement of S4 by binding to a cluster of acidic charges on the S2 and S3 transmembrane domains of the VSD and therefore inhibit activation of EAG family channels. However, a similar divalent ion/proton binding pocket has not been described for hyperpolarization-gated CNBD family channels. We examined the effects of external Cd2+ and protons on Arabidopsis thaliana KAT1 expressed in Xenopus oocytes and found that these ions strongly potentiate voltage activation. Cd2+ at 300 µM depolarizes the V50 of KAT1 by 150 mV, while acidification from pH 7.0 to 4.0 depolarizes the V50 by 49 mV. Regulation of KAT1 by Cd2+ is state dependent and consistent with Cd2+ binding to an S4-down state of the VSD. Neutralization of a conserved acidic charge in the S2 helix in KAT1 (D95N) eliminates Cd2+ and pH sensitivity. Conversely, introduction of acidic residues into KAT1 at additional S2 and S3 cluster positions that are charged in EAG family channels (N99D and Q149E in KAT1) decreases Cd2+ sensitivity and increases proton potentiation. These results suggest that KAT1, and presumably other hyperpolarization-gated plant CNBD channels, can open from an S4-down VSD conformation homologous to the divalent/proton-inhibited conformation of EAG family K+ channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号