全文获取类型
收费全文 | 144篇 |
免费 | 13篇 |
专业分类
157篇 |
出版年
2023年 | 1篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2017年 | 1篇 |
2016年 | 5篇 |
2015年 | 6篇 |
2014年 | 9篇 |
2013年 | 9篇 |
2012年 | 9篇 |
2011年 | 7篇 |
2010年 | 5篇 |
2009年 | 1篇 |
2008年 | 6篇 |
2007年 | 7篇 |
2006年 | 11篇 |
2005年 | 9篇 |
2004年 | 9篇 |
2003年 | 9篇 |
2002年 | 4篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 2篇 |
1991年 | 4篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1979年 | 3篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1975年 | 1篇 |
排序方式: 共有157条查询结果,搜索用时 156 毫秒
111.
Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency 下载免费PDF全文
The Duong YiLiang Wu Heping Shen Jun Peng Xiao Fu Daniel Jacobs Er‐Chien Wang Teng Choon Kho Kean Chern Fong Matthew Stocks Evan Franklin Andrew Blakers Keith McIntosh Wei Li Yi‐Bing Cheng Thomas P. White Klaus Weber Kylie Catchpole 《Liver Transplantation》2017,7(14)
Rubidium (Rb) is explored as an alternative cation to use in a novel multication method with the formamidinium/methylammonium/cesium (Cs) system to obtain 1.73 eV bangap perovskite cells with negligible hysteresis and steady state efficiency as high as 17.4%. The study shows the beneficial effect of Rb in improving the crystallinity and suppressing defect migration in the perovskite material. The light stability of the cells examined under continuous illumination of 12 h is improved upon the addition of Cs and Rb. After several cycles of 12 h light–dark, the cell retains 90% of its initial efficiency. In parallel, sputtered transparent conducting oxide thin films are developed to be used as both rear and front transparent contacts on quartz substrate with less than 5% parasitic absorption of near infrared wavelengths. Using these developments, semi‐transparent perovskite cells are fabricated with steady state efficiency of up to 16.0% and excellent average transparency of ≈84% between 720 and 1100 nm. In a tandem configuration using a 23.9% silicon cell, 26.4% efficiency (10.4% from the silicon cell) in a mechanically stacked tandem configuration is demonstrated which is very close to the current record for a single junction silicon cell of 26.6%. 相似文献
112.
Molly A. Moynihan Nathalie F. Goodkin Kyle M. Morgan Phyllis Y. Y. Kho Adriana Lopes dos Santos Federico M. Lauro David M. Baker Patrick Martin 《The ISME journal》2022,16(1):233
The role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N2 fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based 15N2 tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton. Despite low N2 fixation rates, DDN assimilation supplied up to 6% of the holobiont’s N demand. Active coral-associated diazotrophs were chiefly Cluster I (aerobes or facultative anaerobes), suggesting that oxygen may control coral-associated diazotrophy. Highest N2 fixation rates were observed in the endolithic community (0.20 µg N cm−2 per day). While the diazotrophic community was similar between the tissue and skeleton, RNA:DNA ratios indicate potential differences in relative diazotrophic activity between these compartments. In Pocillopora, DDN was found in endolithic, host, and symbiont compartments, while diazotrophic nifH sequences were only observed in the endolithic layer, suggesting a possible DDN exchange between the endolithic community and the overlying coral tissue. Our findings demonstrate that coral-associated diazotrophy is significant, even in nutrient-rich waters, and suggest that endolithic microbes are major contributors to coral nitrogen cycling on reefs.Subject terms: Microbial ecology, Biogeochemistry, Stable isotope analysis 相似文献
113.
Ascidians have been employed as model organisms in investigating spermatogenesis. 17beta-hydroxysteroid dehydrogenase (HSD) is a steroidogenic enzyme essential for invertebrate spermatogenesis. A homologue of HSD was found in the EST database of Ciona intestinalis and cloned. Sequence analysis showed significant homology to zebra fish, sea urchin and human 17beta-HSD. The gene has an open reading frame (ORF) of 918 nucleotides coding for a polypeptide of 306 amino acids and a calculated mass of 35-kDa. Immunoblotting with an antibody raised against HSD recognized a 35-kDa protein purified from the C. intestinalis testis. The HSD protein was localized in steroidogenic cells in the Ciona testis. These results suggest that C. intestinalis 17beta-HSD is equivalent to the enzyme of vertebrate Leydig cells and that 17beta-HSD could be a phylogenetic marker for organisms producing steroids. 相似文献
114.
A human case of tick bite on the scalp was found at a local hospital on June, 1984. The patient, 63-year old female, was attacked by a tick while working in a farm forest which located in the suburbs of Seoul. The clinical complaint was a (worm) mass on the scalp which she thought as a tumor. On admission the patient complained of facial edema and general malaise. After removal of the mass (tick), small bleeding and discoloration were observed around the biting site. The tick was morphologically examined and identified as Ixodes nipponensis. This is the 4th human case of tick bite reported in the literature of Korea. 相似文献
115.
Kho R Nguyen L Torres-Martínez CL Mehra RK 《Biochemical and biophysical research communications》2000,272(1):29-35
Histidine is a chelator of zinc, most notably in zinc-finger proteins (zinc coordinated by cysteine and histidine) and in hyperaccumulator plants. Sulfide incorporation into molecules containing metal-cysteinyl complexes has been shown to occur in vivo in certain yeasts, leading to enhanced metal tolerance. Demonstrated here for the first time is incorporation of sulfide into zinc-histidine, resulting in histidine-ZnS nanocrystals (NCs) having unique optical properties. Sulfide complexation occurred optimally at alkaline pH into zinc-(histidine)2 species, and UV/Vis absorption maxima were red-shifted as increasing sulfide addition occurred. Intermediate sulfide concentrations led to multiple, thermodynamically preferred NC species within a sample. Fluorescence of histidine-ZnS NCs was greater than ZnS prepared previously with cysteinyl peptides. Transmission electron microscopy and selected-area electron diffraction indicated hexagonal ZnS crystals having an average size of 4.2 nm. A photocatalytic application of histidine-ZnS NCs was shown by efficient degradation of p-nitrophenol and paraquat in the presence of UV irradiation. 相似文献
116.
Kim JW Kim YH Lee HS Yang SJ Kim YW Lee MH Kim JW Seo NS Park CS Park KH 《Biochimica et biophysica acta》2007,1774(5):661-669
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes belonging to glycoside hydrolase family 13, have been studied extensively, but their physiological roles in microbes and evolutionary relationships with other amylolytic enzymes remain unclear. Here, we report the biochemical properties of a thermostable archaeal MAase from Thermoplasma volcanium GSS1 (TpMA) for the first time. The primary structure and catalytic properties of TpMA were similar to those of MAases, such as possession of an extra domain at its N-terminal and preference for CD over starch. TpMA showed high thermostability and optimal activity at 75 degrees C and 80 degrees C for beta-CD and soluble starch, respectively. The recombinant TpMA exists as a high oligomer in a solution and the oligomeric TpMA was dissociated into dimer and monomer mixture by a high concentration of NaCl. The substrate preference and thermostability of TpMA were significantly dependent on the oligomeric state of the enzyme. However, TpMA exhibited distinguishable characteristics from those of bacterial MAases. The transglycosylation pattern of TpMA was opposite to that of bacterial MAases. TpMA formed more alpha-1,4-glycosidic linked transfer product than alpha-1,6-linked products. Like as alpha-amylases, notably, TpMA has a longer subsite structure than those of other CD-degrading enzymes. Our findings in this study suggest that TpMA, the archaeal MAase, shares characteristics of both bacterial MAases and alpha-amylases, and locates in the middle of the evolutionary process between alpha-amylases and bacterial MAases. 相似文献
117.
Naimish R. Patel Medhavi Bole Cheng Chen Charles C. Hardin Alvin T. Kho Justin Mih Linhong Deng James Butler Daniel Tschumperlin Jeffrey J. Fredberg Ramaswamy Krishnan Henry Koziel 《PloS one》2012,7(9)
Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. 相似文献
118.
A positive feedback loop between Dumbfounded and Rolling pebbles leads to myotube enlargement in Drosophila 下载免费PDF全文
In Drosophila, myoblasts are subdivided into founders and fusion-competent myoblasts (fcm) with myotubes forming through fusion of one founder and several fcm. Duf and rolling pebbles 7 (Rols7; also known as antisocial) are expressed in founders, whereas sticks and stones (SNS) is present in fcm. Duf attracts fcm toward founders and also causes translocation of Rols7 from the cytoplasm to the fusion site. We show that Duf is a type 1 transmembrane protein that induces Rols7 translocation specifically when present intact and engaged in homophilic or Duf-SNS adhesion. Although its membrane-anchored extracellular domain functions as an attractant and is sufficient for the initial round of fusion, subsequent fusions require replenishment of Duf through cotranslocation with Rols7 tetratricopeptide repeat/coiled-coil domain-containing vesicles to the founder/myotube surface, causing both Duf and Rols7 to be at fusion sites between founders/myotubes and fcm. This implicates the Duf-Rols7 positive feedback loop to the occurrence of fusion at specific sites along the membrane and provides a mechanism by which the rate of fusion is controlled. 相似文献
119.
Enzymes that utilize nicotinamide adenine dinucleotide (NAD) or its 2'-phosphate derivative (NADP) are found throughout the kingdoms of life. These enzymes are fundamental to many biochemical pathways, including central intermediary metabolism and mechanisms for cell survival and defense. The complete genomes of 25 organisms representing bacteria, protists, fungi, plants, and animals, and 811 viruses, were mined to identify and classify NAD(P)-dependent enzymes. An average of 3.4% of the proteins in these genomes was categorized as NAD(P)-utilizing proteins, with highest prevalence in the medium-chain oxidoreductase and short-chain oxidoreductase families. In general, the distribution of these enzymes by oxidoreductase family was correlated to the number of different catalytic mechanisms in each family. Organisms with smaller genomes encoded a larger proportion of NAD(P)-dependent enzymes in their proteome (approximately 6%) as compared to the larger genomes of eukaryotes (approximately 3%). Among viruses, those with large, double-strand DNA genomes were shown to encode oxidoreductases. Gram-positive and gram-negative bacteria showed some differences in the distribution of NAD(P)-dependent proteins. Several organisms such as M. tuberculosis, P. falciparum, and A. thaliana showed unique distributions of oxidoreductases corresponding to some phenotypic features. 相似文献
120.
The kinetic intermediate of RNase H is structured in a core region of the protein. To probe the role of this intermediate in the folding of RNase H, the folding kinetics of mutant proteins with altered native state stabilities were investigated. Mutations within the folding core destabilize the kinetic intermediate and slow refolding in a manner consistent with an obligatory intermediate model. Mutations outside of the folding core, however, do not affect the stability of the kinetic intermediate but do perturb the native state and transition state. These results indicate that interactions formed in the intermediate persist in the transition and native states and that RNase H folds through a hierarchical mechanism. 相似文献