首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   844篇
  免费   101篇
  国内免费   1篇
  946篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   15篇
  2018年   26篇
  2017年   29篇
  2016年   30篇
  2015年   40篇
  2014年   52篇
  2013年   45篇
  2012年   61篇
  2011年   58篇
  2010年   48篇
  2009年   33篇
  2008年   53篇
  2007年   49篇
  2006年   49篇
  2005年   41篇
  2004年   40篇
  2003年   41篇
  2002年   40篇
  2001年   13篇
  2000年   15篇
  1999年   12篇
  1998年   13篇
  1997年   4篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   5篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   7篇
  1974年   4篇
  1973年   7篇
  1972年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有946条查询结果,搜索用时 15 毫秒
71.
72.
A fibrinolytic enzyme of the mushroom, Schizophyllum commune was purified with chromatographic methods, including a DEAE-Sephadex A-50 ion-exchange column and gel filtrations with Sephadex G-75 and Sephadex G-50 columns. The analysis of fibrin-zymography and SDS-PAGE showed that the enzyme was a monomeric subunit that was estimated to be approximately 17 kDa in size. The fibrinolytic activity of the enzyme in plasminogen-rich and plasminogen-free fibrin plates was 1.25 and 0.44 U/ml, respectively. The N-terminal amino acid sequence of the purified enzyme was identified as HYNIXNSWSSFID, which was highly distinguished from known fibrinolytic enzymes. The relative activity of the purified enzyme with an addition of 5 mM EDTA, Phosphoramidon, and Bestatin was about 76, 64, and 52%, respectively, indicating that it is a metalloprotease. The optimum temperature for the purified enzyme was approximately 45°C, and over 87% of the enzymatic activity was maintained as a stable state in a pH range from 4.0 to 6.0. Therefore, our results suggest that the potential thrombolytic agent from S. commune is a unique type of fibrinolytic enzyme.  相似文献   
73.
A new approach for enrichment culture was applied to obtain cold-active protease-producing bacteria for marine and terrestrial samples from Svalbard, Norway. The method was developed for the enrichment of bacteria by long-term incubation at low temperatures in semi-solid agar medium containing meat pieces as the main source of carbon and energy. ZoBell and 0.1× nutrient broth were added for marine and terrestrial microorganisms, respectively, to supply basal elements for growth. One to three types of colonies were observed from each enrichment culture, indicating that specific bacterial species were enriched during the experimental conditions. Among 89 bacterial isolates, protease activity was observed from 48 isolates in the screening media containing skim milk. Good growth was observed at 4°C and 10°C while none of the isolates could grow at 37°C. At low temperatures, enzyme activity was equal to or higher than activity at higher temperatures. Bacterial isolates were included in the genera Pseudoalteromonas (33 isolates), Arthrobacter (24 isolates), Pseudomonas (16 isolates), Psychrobacter (6 isolates), Sphingobacterium (6 isolates), Flavobacterium (2 isolates), Sporosarcina (1 isolate), and Stenotrophomonas (1 isolate). Protease activity was observed from Pseudoalteromonas (33 isolates), Pseudomonas (10 isolates), Arthrobacter (4 isolates), and Flavobacterium (1 isolate).  相似文献   
74.
Phosphatidylinositol 3-kinase (PI3K) mediates receptor tyrosine kinase and G protein coupled receptor (GPCR) signaling by phosphorylating phosphoinositides to elicit various biological responses. Gαq has previously been shown to inhibit class IA PI3K by interacting with the p110α subunit. However, it is not known if PI3Ks can associate with other Gαq family members such as Gα16. Here, we demonstrated that class IA PI3Ks, p85/p110α and p85/p110β, could form stable complexes with wild type Gα16 and its constitutively active mutant (Gα16QL) in HEK293 cells. In contrast, no interaction between Gα16 and class IB PI3K was observed. The Gα16/p110α signaling complex could be detected in hematopoietic cells that endogenously express Gα16. Overexpression of class I PI3Ks did not inhibit Gα16QL-induced IP3 production and, unlike p63RhoGEF, class IA PI3Ks did not attenuate the binding of PLCβ2 to Gα16QL. On the contrary, the function of class IA PI3Ks was suppressed by Gα16QL as revealed by diminished production of PIP3 as well as inhibition of EGF-induced Akt phosphorylation. Taken together, these results suggest that Gα16 can bind to class IA PI3Ks and inhibit the PI3K signaling pathway.  相似文献   
75.
It has been demonstrated that hypoxia-inducible factor-1 alpha (HIF-1 alpha) mediates ischemic tolerance induced by hypoxia/ischemia or pharmacological preconditioning. In addition, preconditioning stimuli can be cross-tolerant, safeguarding against other types of injury. We therefore hypothesized HIF-1 alpha might also be associated with ischemic tolerance induced by hyperthermic preconditioning. In the present study, we demonstrated for the first time that 6 h of hyperthermia (38 °C or 40 °C) could induce a characteristic “reactive” morphology and a significant increase in the expression of bystin in astrocytes. We also showed that pre-treatment with 6 h of hyperthermia resulted in a significant increase in cell viability and a remarkable decrease in lactate dehydrogenase (LDH) release and apoptosis development in the astrocytes that were exposed to 24 h of ischemia and a subsequent 24 h of reperfusion. Analysis of mechanisms showed that hyperthermia could lead to a significant increase in HIF-1 alpha expression and also the HIF-1 binding activity in the ischemia/reperfusion astrocytes. The data provide evidence to our hypothesis that the up-regulation of HIF-1 alpha is associated with the protective effects of hyperthermic preconditioning on astrocytes against ischemia/reperfusion injury.  相似文献   
76.
Isothermal titration calorimeters (ITCs) are thermodynamic instruments used for the determination of enthalpy changes in any physical/chemical reaction. This can be applied in various fields of biotechnology. This review explains ITC applications, especially in bioseparation, drug development and cell metabolism. In liquid chromatography, the separation/purification of specific proteins or polypeptides in a mixture is usually achieved by varying the adsorption affinities of the different proteins/polypeptides for the adsorbent under different mobile-phase conditions and temperatures. Using ITC analysis, the binding mechanism of proteins with adsorbent solid material is derived by elucidating enthalpy and entropy changes, which offer valuable guidelines for designing experimental conditions in chromatographic separation. The binding affinity of a drug with its target is studied by deriving binding enthalpy and binding entropy. To improve the binding affinity, suitable lead compounds for a drug can be identified and their affinity tested by ITC. Recently ITC has also been used in studying cell metabolism. The heat produced by animal cells in culture can be used as a primary indicator of the kinetics of cell metabolism, which provides key information for drug bioactivity and operation parameters for process cell culture.  相似文献   
77.
Nucleic acids are an important target for many therapeutics. Small molecules that bind to nucleic acids are important in many aspects of medicines, particularly in cancer chemotherapy. In recent years, many studies have utilized polynucleic acids with various sequences to demonstrate the binding mechanism of daunomycin, a potent anticancer drug. This study describes that isothermal titration calorimetry is a useful tool for studying the fundamental binding mechanism systemically. The results suggest that the binding free energy is more favorable when the temperature is increased. The binding entropy contributes to this effect. Furthermore, the amine group on daunomycin contributes electrostatic interaction that induces the binding process. In addition, enthalpy-entropy compensation is also exhibited in the daunomycin-DNA binding mechanism. This study used an easy, convenient method of performing a systemic study in a recognition system. The results from this study provide additional information about microscopic mechanisms for molecular design and molecular recognition.  相似文献   
78.
79.
Sequence-specific DNA detection is important in various biomedical applications such as gene expression profiling, disease diagnosis and treatment, drug discovery and forensic analysis. Here we report a gold nanoparticle-based method that allows DNA detection and quantification and is capable of single nucleotide polymorphism (SNP) discrimination. The precise quantification of single-stranded DNA is due to the formation of defined nanoparticle-DNA conjugate groupings in the presence of target/linker DNA. Conjugate groupings were characterized and quantified by gel electrophoresis. A linear correlation between the amount of target DNA and conjugate groupings was found. For SNP detection, single base mismatch discrimination was achieved for both the end- and center-base mismatch. The method described here may be useful for the development of a simple and quantitative DNA detection assay.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号