首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20358篇
  免费   1971篇
  国内免费   645篇
  22974篇
  2023年   134篇
  2022年   318篇
  2021年   484篇
  2020年   331篇
  2019年   426篇
  2018年   495篇
  2017年   370篇
  2016年   616篇
  2015年   999篇
  2014年   1097篇
  2013年   1291篇
  2012年   1505篇
  2011年   1481篇
  2010年   972篇
  2009年   766篇
  2008年   1052篇
  2007年   984篇
  2006年   937篇
  2005年   855篇
  2004年   787篇
  2003年   755篇
  2002年   681篇
  2001年   562篇
  2000年   498篇
  1999年   460篇
  1998年   228篇
  1997年   207篇
  1996年   188篇
  1995年   174篇
  1994年   154篇
  1993年   126篇
  1992年   250篇
  1991年   247篇
  1990年   209篇
  1989年   219篇
  1988年   195篇
  1987年   155篇
  1986年   147篇
  1985年   175篇
  1984年   125篇
  1983年   99篇
  1982年   93篇
  1981年   99篇
  1979年   111篇
  1978年   94篇
  1977年   73篇
  1976年   70篇
  1975年   95篇
  1974年   93篇
  1973年   88篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Zhang  Hui  Wang  Yuexing  Deng  Ce  Zhao  Sheng  Zhang  Peng  Feng  Jie  Huang  Wei  Kang  Shujing  Qian  Qian  Xiong  Guosheng  Chang  Yuxiao 《中国科学:生命科学英文版》2022,65(2):398-411

High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.

  相似文献   
122.
Nuclear fragmentation is a common feature in many neurodegenerative diseases, including Alzheimer's disease (AD). In this study, we show that nuclear lamina dispersion is an early and irreversible trigger for cell death initiated by deregulated Cdk5, rather than a consequence of apoptosis. Cyclin-dependent kinase 5 (Cdk5) activity is significantly increased in AD and contributes to all three hallmarks: neurotoxic amyloid-β (Aβ), neurofibrillary tangles (NFT), and extensive cell death. Using Aβ and glutamate as the neurotoxic stimuli, we show that deregulated Cdk5 induces nuclear lamina dispersion by direct phosphorylation of lamin A and lamin B1 in neuronal cells and primary cortical neurons. Phosphorylation-resistant mutants of lamins confer resistance to nuclear dispersion and cell death on neurotoxic stimulation, highlighting this as a major mechanism for neuronal death. Rapid alteration of lamin localization pattern and nuclear membrane change are further supported by in vivo data using an AD mouse model. After p25 induction, the pattern of lamin localization was significantly altered, preceding neuronal death, suggesting that it is an early pathological event in p25-inducible transgenic mice. Importantly, lamin dispersion is coupled with Cdk5 nuclear localization, which is highly neurotoxic. Inhibition of nuclear dispersion rescues neuronal cells from cell death, underscoring the significance of this event to Cdk5-mediated neurotoxicity.  相似文献   
123.
Zipper-interacting protein kinase (ZIPK) is a member of the death-associated protein kinase family associated with apoptosis in nonmuscle cells where it phosphorylates myosin regulatory light chain (RLC) to promote membrane blebbing. ZIPK mRNA and protein are abundant in heart tissue and isolated ventricular neonatal rat cardiac myocytes. An unbiased substrate search performed with purified ZIPK on heart homogenates led to the discovery of a prominent 20-kDa protein substrate identified as RLC of ventricular myosin. Biochemical analyses showed ZIPK phosphorylated cardiac RLC at Ser-15 with a Vmax value 2-fold greater than the value for smooth/nonmuscle RLC; cardiac RLC is a favorable biochemical substrate. Knockdown of ZIPK in cardiac myocytes by small interfering RNA significantly decreased the extent of RLC Ser-15 phosphorylation. Thus, ZIPK may act as a cardiac RLC kinase and thereby affect contractility.  相似文献   
124.
Amyloid-beta peptide (Abeta) interacts with the vasculature to influence Abeta levels in the brain and cerebral blood flow, providing a means of amplifying the Abeta-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Abeta infusion and studies in genetically manipulated mice show that Abeta interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Abeta across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Abeta-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Abeta in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Abeta-vascular interactions, including development of cerebral amyloidosis.  相似文献   
125.
126.
SAR studies on amides, ureas, and vinylogous amides derived from pyrrolidine led to the discovery of several potent hNK(1) antagonists. One particular vinylogous amide (45b) had excellent potency, selectivity, pharmacokinetic profile, and functional activity in vivo. An in vivo rhesus macaque brain receptor occupancy PET study for compound 45b revealed an estimated Occ(90) approximately 300 ng/ml.  相似文献   
127.
128.
The D1 dopamine receptor from rat corpus striatum has been purified 200-250-fold by using a newly developed biospecific affinity chromatography matrix based on a derivative of the D1 selective antagonist SCH 23390. This compound, (RS)-5-(4-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benz azepin-7-o l (SCH 39111), possesses high affinity for the D1 receptor and, when immobilized on Sepharose 6B through an extended spacer arm, was able to adsorb digitonin-solubilized D1 receptors. The interaction between the solubilized receptor and the affinity matrix was biospecific. Adsorption of receptor activity could be blocked in a stereoselective fashion [SCH 23390 greater than SCH 23388; (+)-butaclamol greater than (-)-butaclamol]. The elution of [3H]SCH 23390 activity from the gel demonstrated similar stereoselectivity for antagonist ligands. Agonists eluted receptor activity with a rank order of potency consistent with that of a D1 receptor [apomorphine greater than dopamine greater than (-)-epinephrine much greater than LY 171555 greater than serotonin]. SCH 39111-Sepharose absorbed 75-85% of the soluble receptor activity, and after the gel was washed extensively, 35-55% of the absorbed receptor activity could be eluted with 100 microM (+)-butaclamol with specific activities ranging from 250 to 450 pmol/mg of protein. The affinity-purified receptor retains the ligand binding characteristics of a D1 dopamine receptor. This affinity chromatography procedure should prove valuable in the isolation and molecular characterization of the D1 dopamine receptor.  相似文献   
129.
BALB/3T3 cells were transformed by transfection with DNA encoding the mutated ras(Q(61)K) from shrimp Penaeus japonicus (Huang et al., 2000). The GTPase-activating protein (GAP) in the cytosol fraction was significantly expressed and degraded, compared to untransformed cells on the western blot. To understand this in more detail, the interaction of the bacterially expressed shrimp Ras (S-Ras) with GAP was investigated using GAP purified from mouse brains. SDS-polyacrylamide gel electrophoresis revealed the monomers of the purified GAP to have a relative mass of 65,000. Since the purified GAP was bound to the Ras conjugated affinity sepharose column with high affinity and its GTP hydolysis activity upon binding with tubulin was suppressed, the purified enzyme was concluded to be neurofibromin-like. The purified GAP enhanced the intrinsic GTPase activity of the S-Ras, to convert it into the inactive GDP-bound form, in agreement with findings for GTP-bound K(B)-Ras in vitro. To compare the effects between isoprenoids and GAP on the GTP-hydrolysis of Ras, we applied the GTP-locked shrimp mutant S-Ras(Q(61)K) and GTP-locked rat mutant K(B)-ras(Q(61)K). Radioassay studies showed that geranylgeranyl pyrophosphate at microg level catalyzed the GTP hydrolysis of S-Ras(Q(61)K) and K(B)-ras(Q(61)K) competently, but not farnesyl pyrophosphate or the purified GAP. The present study provides the view that the geranylgeranyl pyrophosphate at carboxyl terminal CAAX assists GTP hydrolysis to Ras proteins probably in a manner similar to the substrate assisted catalysis in GTPase mechanism.  相似文献   
130.
Specific 125I-CCK receptor binding was significantly increased in brain tissue taken from guinea pig or mouse following chronic (2-3 week) daily administration of haloperidol (2-3 mg/kg/day). Scatchard analysis indicated the increase in CCK binding was due to an increased receptor number (B max) with no change in affinity (Kd). In guinea pigs, the increased CCK binding was observed in the mesolimbic regions and frontal cortex, but not in striatum, hippocampus nor posterior cortex. In mice, however, the increases occurred in both pooled cerebral cortical-hippocampal tissue, and in the remainder of the brain. Enhanced CCK receptor binding was also observed in membranes prepared from whole brain of mice one month following intracisternal injection of 6-hydroxydopamine. Additionally, an increase in CCK binding was observed in mesolimbic regions and frontal cortex, but not striatum or hippocampus, of guinea pigs 3 weeks after an unilateral radiofrequency lesions of the ipsilateral ventral tegmentum. The present studies demonstrate that three different procedures which reduce dopaminergic function in the brain enhance CCK receptor binding. The data provide further support for a functional interrelationship between dopaminergic systems and CCK in some brain regions and raise the possibility that CCK may play a role in the antipsychotic action of neuroleptics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号