首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19533篇
  免费   1471篇
  国内免费   1589篇
  22593篇
  2024年   51篇
  2023年   340篇
  2022年   684篇
  2021年   1109篇
  2020年   685篇
  2019年   936篇
  2018年   835篇
  2017年   580篇
  2016年   902篇
  2015年   1198篇
  2014年   1499篇
  2013年   1560篇
  2012年   1841篇
  2011年   1596篇
  2010年   1011篇
  2009年   868篇
  2008年   966篇
  2007年   825篇
  2006年   674篇
  2005年   586篇
  2004年   491篇
  2003年   441篇
  2002年   393篇
  2001年   285篇
  2000年   290篇
  1999年   308篇
  1998年   197篇
  1997年   203篇
  1996年   188篇
  1995年   152篇
  1994年   137篇
  1993年   97篇
  1992年   142篇
  1991年   114篇
  1990年   101篇
  1989年   79篇
  1988年   52篇
  1987年   31篇
  1986年   28篇
  1985年   41篇
  1984年   18篇
  1983年   24篇
  1982年   13篇
  1981年   9篇
  1980年   3篇
  1979年   4篇
  1965年   1篇
  1963年   1篇
  1962年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Cellular FLICE-inhibitory protein (c-FLIP) is an inhibitor of caspase-8 and is required for macrophage survival. Recent studies have revealed a selective role of caspase-8 in noncanonical IL-1β production that is independent of caspase-1 or inflammasome. Here we demonstrated that c-FLIPL is an unexpected contributor to canonical inflammasome activation for the generation of caspase-1 and active IL-1β. Hemizygotic deletion of c-FLIP impaired ATP- and monosodium uric acid (MSU)-induced IL-1β production in macrophages primed through Toll-like receptors (TLRs). Decreased IL-1β expression was attributed to a reduced activation of caspase-1 in c-FLIP hemizygotic cells. In contrast, the production of TNF-α was not affected by downregulation in c-FLIP. c-FLIPL interacted with NLRP3 or procaspase-1. c-FLIP is required for the full NLRP3 inflammasome assembly and NLRP3 mitochondrial localization, and c-FLIP is associated with NLRP3 inflammasome. c-FLIP downregulation also reduced AIM2 inflammasome activation. In contrast, c-FLIP inhibited SMAC mimetic-, FasL-, or Dectin-1-induced IL-1β generation that is caspase-8-mediated. Our results demonstrate a prominent role of c-FLIPL in the optimal activation of the NLRP3 and AIM2 inflammasomes, and suggest that c-FLIP could be a valid target for treatment of inflammatory diseases caused by over-activation of inflammasomes.  相似文献   
992.
Patients with damage to the medial temporal lobe show deficits in forming new declarative memories but can still recall older memories, suggesting that the medial temporal lobe is necessary for encoding memories in the neocortex. Here, we found that cortical projection neurons in the perirhinal and entorhinal cortices were mostly immunopositive for cholecystokinin (CCK). Local infusion of CCK in the auditory cortex of anesthetized rats induced plastic changes that enabled cortical neurons to potentiate their responses or to start responding to an auditory stimulus that was paired with a tone that robustly triggered action potentials. CCK infusion also enabled auditory neurons to start responding to a light stimulus that was paired with a noise burst. In vivo intracellular recordings in the auditory cortex showed that synaptic strength was potentiated after two pairings of presynaptic and postsynaptic activity in the presence of CCK. Infusion of a CCKB antagonist in the auditory cortex prevented the formation of a visuo-auditory association in awake rats. Finally, activation of the entorhinal cortex potentiated neuronal responses in the auditory cortex, which was suppressed by infusion of a CCKB antagonist. Together, these findings suggest that the medial temporal lobe influences neocortical plasticity via CCK-positive cortical projection neurons in the entorhinal cortex.  相似文献   
993.
It has been shown that cholesterol modulates activity of protein kinase C (PKC), and PKC phosphorylates connexin 43 (Cx43) to regulate its function, respectively. However, it is not known whether cholesterol modulates function of Cx43 through regulating activity of PKC. In the present study, we demonstrated that cholesterol enrichment reduced the dye transfer ability of Cx43 in cultured H9c2 cells. Western blot analysis indicated that cholesterol enrichment enhanced the phosphorylated state of Cx43. Immunofluorescent images showed that cholesterol enrichment made the Cx43 distribution from condensed to diffused manner in the interface between the cells. In cholesterol enriched cells, PKC antagonists partially restored the dye transfer ability among the cells, downregulated the phosphorylation of Cx43 and redistributed Cx43 from the diffused manner to the condensed manner in the cell interface. In addition, reduction of cholesterol level suppressed PKC activity to phosphorylate Cx43 and restored Cx43 function in PKC agonist-treated cells. Furthermore, we demonstrated that cholesterol enrichment upregulated the phosphorylated state of Cx43 at Ser368, while PKC antagonists reversed the effect. Taken together, cholesterol level in the cells plays important roles in regulating Cx43 function through activation of the PKC signaling pathway.  相似文献   
994.
Tumor necrosis factor (TNF)-α is one of the major proinflammatory mediators of rheumatic arthritis (RA); the regulatory factors for TNF-α release is not fully understood. This study aims to investigate the role of prolactin receptor (PRLR) activation in regulating the expression and release of TNF-α from CD14+ monocytes. The results showed that the expression of PRLR was detectable in CD14+ monocytes of healthy subjects, which was markedly increased in RA patients. Exposure to PRL in the culture increased the expression and release of TNF-α from CD14+ monocytes, which was abolished by the PRLR gene silencing or blocking the mitogen activated protein (MAPK) pathway. We conclude that exposure to PRL increases TNF-α release from CD14+ monocytes of RA patients, which can be abolished by PRLR gene silencing or treating with MAPK inhibitor.  相似文献   
995.
996.
997.
The murine macrophage‐like cell line J774.1 was treated with heat‐killed cells of Lactobacillus GG (LGG) and L. gasseri TMC0356 (TMC 0356). Interleukin (IL)‐6, IL‐12, and tumor necrosis factor‐α were profiled from the J774.1 cells using enzyme‐linked immunosorbent assay methods. The conditioned medium from cultured J774.1 cells was transferred to the preadipocyte cell line 3T3‐L1 (which is a mouse embryonic fibroblast‐adipose‐like cell line). Growth and differentiation of 3T3‐L1 cells were monitored by analyzing lipid accumulation and expression of peroxisome proliferator‐activated receptor (PPAR)‐γ mRNA. The medium conditioned by 3T3‐L1 cells was added to J774.1 cells and the cytokines in the supernatant analyzed. Compared with that of cells exposed to a PBS‐conditioned medium, lipid accumulation in 3T3‐L1 cells was significantly suppressed in a dose‐dependent manner by each medium that had been conditioned with LGG and TMC0356. PPAR‐γ mRNA expression in 3T3‐L1 cells was also significantly downregulated (P < 0.01, P < 0.05, respectively). The conditioned medium of 3T3‐L1 adipose phenotype significantly stimulated production of IL‐6 and IL‐12 in J774.1 cells treated with LGG and TMC0356. These results suggest that lactobacilli may suppress differentiation of preadipocytes through macrophage activation and alter the immune responses of macrophages to adipose cells.  相似文献   
998.
Cancer is a multi‐faceted disease comprised of a combination of genetic, epigenetic, metabolic and signalling aberrations which severely disrupt the normal homoeostasis of cell growth and death. Rational developments of highly selective drugs which specifically block only one of the signalling pathways have been associated with limited therapeutic success. Multi‐targeted prevention of cancer has emerged as a new paradigm for effective anti‐cancer treatment. Platycodin D, a triterpenoid saponin, is one the major active components of the roots of Platycodon grandiflorum and possesses multiple biological and pharmacological properties including, anti‐nociceptive, anti‐atherosclerosis, antiviral, anti‐inflammatory, anti‐obesity, immunoregulatory, hepatoprotective and anti‐tumour activities. Recently, the anti‐cancer activity of platycodin D has been extensively studied. The purpose of this review was to give our perspectives on the current status of platycodin D and discuss its anti‐cancer activity and molecular mechanisms which may help the further design and conduct of pre‐clinical and clinical trials to develop it successfully into a potential lead drug for oncological therapy. Platycodin D has been shown to fight cancer by inducing apoptosis, cell cycle arrest, and autophagy and inhibiting angiogenesis, invasion and metastasis by targeting multiple signalling pathways which are frequently deregulated in cancers suggesting that this multi‐target activity rather than a single effect may play an important role in developing platycodin D into potential anti‐cancer drug.  相似文献   
999.
1000.
Although HCO3 is known to be required for early embryo development, its exact role remains elusive. Here we report that HCO3 acts as an environmental cue in regulating miR-125b expression through CFTR-mediated influx during preimplantation embryo development. The results show that the effect of HCO3 on preimplantation embryo development can be suppressed by interfering the function of a HCO3-conducting channel, CFTR, by a specific inhibitor or gene knockout. Removal of extracellular HCO3 or inhibition of CFTR reduces miR-125b expression in 2 cell-stage mouse embryos. Knockdown of miR-125b mimics the effect of HCO3 removal and CFTR inhibition, while injection of miR-125b precursor reverses it. Downregulation of miR-125b upregulates p53 cascade in both human and mouse embryos. The activation of miR-125b is shown to be mediated by sAC/PKA-dependent nuclear shuttling of NF-κB. These results have revealed a critical role of CFTR in signal transduction linking the environmental HCO3 to activation of miR-125b during preimplantation embryo development and indicated the importance of ion channels in regulation of miRNAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号