全文获取类型
收费全文 | 15571篇 |
免费 | 1343篇 |
国内免费 | 1904篇 |
专业分类
18818篇 |
出版年
2024年 | 52篇 |
2023年 | 281篇 |
2022年 | 587篇 |
2021年 | 905篇 |
2020年 | 701篇 |
2019年 | 812篇 |
2018年 | 755篇 |
2017年 | 553篇 |
2016年 | 724篇 |
2015年 | 1035篇 |
2014年 | 1249篇 |
2013年 | 1278篇 |
2012年 | 1558篇 |
2011年 | 1434篇 |
2010年 | 905篇 |
2009年 | 727篇 |
2008年 | 807篇 |
2007年 | 743篇 |
2006年 | 604篇 |
2005年 | 527篇 |
2004年 | 385篇 |
2003年 | 303篇 |
2002年 | 279篇 |
2001年 | 191篇 |
2000年 | 180篇 |
1999年 | 174篇 |
1998年 | 120篇 |
1997年 | 114篇 |
1996年 | 117篇 |
1995年 | 96篇 |
1994年 | 89篇 |
1993年 | 66篇 |
1992年 | 85篇 |
1991年 | 55篇 |
1990年 | 57篇 |
1989年 | 50篇 |
1988年 | 35篇 |
1987年 | 27篇 |
1986年 | 28篇 |
1985年 | 29篇 |
1984年 | 15篇 |
1983年 | 14篇 |
1982年 | 13篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 10篇 |
1978年 | 4篇 |
1976年 | 9篇 |
1975年 | 8篇 |
1971年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Li Xiaoyu Liang Qiao-Xia Lin Jin-Ran Peng Jinying Yang Jian-Hua Yi Chengqi Yu Yang Zhang Qiangfeng Cliff Zhou Ke-Ren 《中国科学:生命科学英文版》2020,63(4):501-515
RNA can interact with RNA-binding proteins(RBPs), mRNA, or other non-coding RNAs(ncRNAs) to form complex regulatory networks. High-throughput CLIP-seq, degradome-seq, and RNA-RNA interactome sequencing methods represent powerful approaches to identify biologically relevant ncRNA-target and protein-ncRNA interactions. However, assigning ncRNAs to their regulatory target genes or interacting RNA-binding proteins(RBPs) remains technically challenging. Chemical modifications to mRNA also play important roles in regulating gene expression. Investigation of the functional roles of these modifications relies highly on the detection methods used. RNA structure is also critical at nearly every step of the RNA life cycle. In this review, we summarize recent advances and limitations in CLIP technologies and discuss the computational challenges of and bioinformatics tools used for decoding the functions and regulatory networks of ncRNAs. We also summarize methods used to detect RNA modifications and to probe RNA structure. 相似文献
72.
Solar Cells: Synergic Interface Optimization with Green Solvent Engineering in Mixed Perovskite Solar Cells (Adv. Energy Mater. 20/2017) 下载免费PDF全文
73.
He W Zhao Y Zhang C An L Hu Z Liu Y Han L Bi L Xie Z Xue P Yang F Hang H 《Nucleic acids research》2008,36(20):6406-6417
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1. 相似文献
74.
75.
76.
77.
含par位点的重组质粒Psjm3的构建及其稳定性研究 总被引:3,自引:0,他引:3
利用自然质粒pSC101par位点的分离稳定性功能,构建了含par位点的质粒pSJM4和pSJM3,通过在同样宿主E.coli HB101中的稳定性比较研究表明,不含par位点的重组质粒pSJ3很不稳定,E.coli G3(pSJ3)在培养到第10代时已开始出现pSJ3的丢失,到培养至50代时则已全部丢失;而含par位点的重组质粒pSJM3则表现得十分稳定,E.coli G3-1(pSJM3)经70代培养,仍无明显的质粒丢失现象,其稳定率保持97%以上。通过对不含par和含par的非重组质粒pUC18和pSJM4的稳定性比较也获得同样的结果。通过对E.coliG3(pSJ3)和E.coli G3-1(pSJM3)的产酶活性比较研究表明,G3-1菌株明显高于G3菌株,说明我们构建的重组质粒pSJM3上的par位点功能不仅没有因外源基因的表达而受影响,而且有利于外源基因的表达。 相似文献
78.
Dong Zheng Qiang Sun Zhaoliang Su Fanzhi Kong Xiaoju Shi Jia Tong Pei Shen Tianqing Peng Shengjun Wang Huaxi Xu 《PloS one》2013,8(4)
The outer membrane protein RagB is one of the major virulence factors of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis). In order to induce protective immune response against P. gingivalis infection, an mGITRL gene-linked ragB DNA vaccine (pIRES-ragB-mGITRL ) was constructed. Six-week-old female BALB/c mice were immunized with pIRES-ragB-mGITRL through intramuscular injection and then challenged by subcutaneous injection in the abdomen with P. gingivalis. RagB-specific antibody-forming cells were evaluated by an Enzyme-linked immunosorbent spot, and specific antibody was determined by enzyme-linked immunosorbent assay. In addition, the frequencies of Tfh and IFN-γ+ T cells in spleen were measured using flow cytometer, and the levels of IL-21 and IFN-γ mRNA or proteins were detected by real time RT-PCR or ELISA. The data showed that the mGITRL-linked ragB DNA vaccine induced higher levels of RagB-specific IgG in serum and RagB-specific antibody-forming cells in spleen. The frequencies of Tfh and IFN-γ+ T cells were obviously expanded in mice immunized by pIRES-ragB-mGITRL compared with other groups (pIRES or pIRES-ragB ). The levels of Tfh and IFN-γ+ T cells associated cytokines were also significantly increased in pIRES-ragB-mGITRL group. Therefore, the mice immunized with ragB plus mGITRL showed the stronger resistant to P. gingivalis infection and a significant reduction of the lesion size caused by P. gingivalis infection comparing with other groups. Taken together, our findings demonstrated that intramuscular injection of DNA vaccine ragB together with mGITRL induced protective immune response dramatically by increasing Tfh and IFN-γ+ T cells and antibody production to P. gingivalis. 相似文献
79.
Bo Peng Yongxiang Li Yang Wang Cheng Liu Zhizhai Liu Yan Zhang Weiwei Tan Di Wang Yunsu Shi Baocheng Sun Yanchun Song Tianyu Wang Yu Li 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2013,126(3):773-789
Simultaneous improvement in grain yield and related traits in maize hybrids and their parents (inbred lines) requires a better knowledge of genotypic correlations between family per se performance (FP) and testcross performance (TP). Thus, to understand the genetic basis of yield-related traits in both inbred lines and their testcrosses, two F 2:3 populations (including 230 and 235 families, respectively) were evaluated for both FP and TP of eight yield-related traits in three diverse environments. Genotypic correlations between FP and TP, $ \hat{r}_{\text{g}} $ (FP, TP), were low (0–0.16) for grain yield per plant (GYPP) and kernel number per plant (KNPP) in the two populations, but relatively higher (0.32–0.69) for the other six traits with additive effects as the primary gene action. Similar results were demonstrated by the genotypic correlations between observed and predicted TP values based on quantitative trait loci positions and effects for FP, $ \hat{r}_{\text{g}} $ (M FP, Y TP). A total of 88 and 35 QTL were detected with FP and TP, respectively, across all eight traits in the two populations. However, the genotypic variances explained by the QTL detected in the cross-validation analysis were much lower than those in the whole data set for all traits. Several common QTL between FP and TP that accounted for large phenotypic variances were clustered in four genomic regions (bin 1.10, 4.05–4.06, 9.02, and 10.04), which are promising candidate loci for further map-based cloning and improvement in grain yield in maize. Compared with publicly available QTL data, these QTL were also detected in a wide range of genetic backgrounds and environments in maize. These results imply that effective selection based on FP to improve TP could be achieved for traits with prevailing additive effects. 相似文献
80.