首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92549篇
  免费   6724篇
  国内免费   6352篇
  105625篇
  2024年   201篇
  2023年   1254篇
  2022年   2940篇
  2021年   4868篇
  2020年   3193篇
  2019年   4016篇
  2018年   3956篇
  2017年   2866篇
  2016年   4051篇
  2015年   5841篇
  2014年   6886篇
  2013年   7247篇
  2012年   8492篇
  2011年   7736篇
  2010年   4483篇
  2009年   4188篇
  2008年   4776篇
  2007年   4147篇
  2006年   3533篇
  2005年   2820篇
  2004年   2312篇
  2003年   2105篇
  2002年   1698篇
  2001年   1471篇
  2000年   1342篇
  1999年   1407篇
  1998年   819篇
  1997年   892篇
  1996年   813篇
  1995年   775篇
  1994年   673篇
  1993年   570篇
  1992年   682篇
  1991年   535篇
  1990年   455篇
  1989年   331篇
  1988年   278篇
  1987年   219篇
  1986年   185篇
  1985年   210篇
  1984年   124篇
  1983年   119篇
  1982年   54篇
  1981年   23篇
  1980年   20篇
  1979年   18篇
  1976年   1篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
961.
Hepatocellular carcinoma (HCC) is considered as a disease of dysfunction of the stem cells. Studies on stem cells have demonstrated that Oct4 plays a pivotal role in embryo regulation. In order to understand the role of Oct4 in HCC and the relationship among Oct4 and wnt/β-catenin and TGF-β signal pathways, we have detected the expression of Oct4, Nanog, Sox2, STAT3 as well as the genes in wnt/β-catenin, and TGF-β families in HCC cell lines and in tumor specimens from HCC patients. The authors found that Oct4 was expressed in all of the four HCC cell lines and the tumor specimens from HCC patients. Some other genes were also expressed in them with different level including Nanog, Sox2, STAT3 and TCF3, wnt10b, β-catenin, ELF, Smad3 and Smad4. The ability of the clone formation and migration of the HepG2 decreased after Oct4 was knockdowned. Silencing of Oct4 and TCF3 in HCC cell line HepG2 revealed that there were complicated relationships among Oct4, wnt/β-catenin family and TGF-β family genes. Knockdowning Oct4 reduced the expression of TGF-β family genes ELF, Smad3, Smad4 and wnt/β-catenin family genes, wnt10b, and β-catenin but increased TCF3. In reverse, knockdowning TCF3 led to the increased expression of Oct4 and TGF-β family genes. In conclusion, the expression of Oct4 in HCC may play an important role as in stem cell. Because Oct4 improves not only the function of wnt/β-catenin, but also the TGF-β signal pathways, the significance of its expression in HCC might be more complicated than we evinced before.  相似文献   
962.
963.
Q Zhu  X Zhang  L Zhang  W Li  H Wu  X Yuan  F Mao  M Wang  W Zhu  H Qian  W Xu 《Cell death & disease》2014,5(6):e1295
Emerging evidence indicate that mesenchymal stem cells (MSCs) affect tumor progression by reshaping the tumor microenvironment. Neutrophils are essential component of the tumor microenvironment and are critically involved in cancer progression. Whether the phenotype and function of neutrophils is influenced by MSCs is not well understood. Herein, we investigated the interaction between neutrophils and gastric cancer-derived MSCs (GC-MSCs) and explored the biological role of this interaction. We found that GC-MSCs induced the chemotaxis of neutrophils and protected them from spontaneous apoptosis. Neutrophils were activated by the conditioned medium from GC-MSCs with increased expression of IL-8, TNFα, CCL2, and oncostatin M (OSM). GC-MSCs-primed neutrophils augmented the migration of gastric cancer cells in a cell contact-dependent manner but had minimal effect on gastric cancer cell proliferation. In addition, GC-MSCs-primed neutrophils prompted endothelial cells to form tube-like structure in vitro. We demonstrated that GC-MSCs stimulated the activation of STAT3 and ERK1/2 pathways in neutrophils, which was essential for the functions of activated neutrophils. We further revealed that GC-MSCs-derived IL-6 was responsible for the protection and activation of neutrophils. In turn, GC-MSCs-primed neutrophils induced the differentiation of normal MSCs into cancer-associated fibroblasts (CAFs). Collectively, our results suggest that GC-MSCs regulate the chemotaxis, survival, activation, and function of neutrophils in gastric cancer via an IL-6–STAT3–ERK1/2 signaling cascade. The reciprocal interaction between GC-MSCs and neutrophils presents a novel mechanism for the role of MSCs in remodeling cancer niche and provides a potential target for gastric cancer therapy.Accumulating evidence suggest that neutrophils are critical for cancer initiation and progression.1, 2 The increased presence of intratumoral neutrophils has been linked to a poorer prognosis for patients with renal cancer, hepatocellular carcinoma (HCC), melanoma, head and neck squamous cell carcinoma (HNSCC), pancreatic cancer, colorectal carcinoma, and gastric adenocarcinoma.3 Recent studies using murine tumor models or involving cancer patients have suggested an important functional role of neutrophils during tumor progression.4, 5, 6, 7 Neutrophils-derived factors promote genetic mutations leading to tumorigenesis or promote tumor cell proliferation,8 migration, and invasion.9, 10 Neutrophils have also been demonstrated to induce tumor vascularization by the production of pro-angiogenic factors11, 12The infiltration of neutrophils into tumors has been shown to be mediated by factors produced by both tumor and stromal cells. Recent reports suggest that tumor cells actively modulate the functions of neutrophils. Tumor-derived CXCL5 modulates the chemotaxis of neutrophils, which in turn enhances the migration and invasion of human HCC cells.13 HNSCC cells-derived MIF induces the recruitment and activation of neutrophils through a p38-dependent manner.14, 15 Neutrophils respond to hyaluronan fragments in tumor supernatants via PI3K/Akt signaling, leading to prolonged survival and stimulating effect on HCC cell motility.16 Kuang et al.17 suggest that IL-17 promotes the migration of neutrophils into HCC through epithelial cell-derived CXC chemokines, resulting in increased MMP-9 production and angiogenesis at invading tumor edge However, much less is known about the role of stromal cells in modulating the phenotype and function of neutrophils in cancer thus far.Cancer-associated fibroblasts (CAFs) have a key role in cancer mainly through secretion of soluble factors, as growth factors or inflammatory mediators, as well as production of extracellular matrix proteins and their proteases. These activated fibroblasts are involved in creating a niche for cancer cells, promoting their proliferation, motility and chemoresistance. Activated fibroblasts express several mesenchymal markers such as α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP), and vimentin. CAFs actively participate in reciprocal interaction with tumor cells and with other cell types in the microenvironment, contributing to a tumor-permissive niche and promoting tumor progression.Mesenchymal stem cells (MSCs) are adult stromal cells with self-renewal and pluripotent differentiation abilities. MSCs can be mobilized from bone marrow to the site of damage, respond to the local microenvironment, and exert wound repair and tissue regeneration functions upon injury and inflammation conditions.18 MSCs have been considered as one of the major components of the tumor stroma and are believed to be the precursors of CAFs.19, 20 We have previously demonstrated that human bone marrow MSCs prompt tumor growth in vivo.21 In addition, we have recently isolated MSCs-like cells from the gastric cancer tissues (GC) and the adjacent normal tissues (GCN) and shown that the gastric cancer-derived MSCs (GC-MSCs) possess the properties of CAFs.22, 23 As tumor-derived MSCs are often exposed to distinct inflammatory cells and factors in the tumor microenvironment, they may acquire novel functions that are not present in normal MSCs, and these unique functions may have a role in reshaping the tumor microenvironment and ultimately affect tumor progression. As neutrophils are key mediators of tumor progression and tumor angiogenesis, it is likely that an intense interaction may exist between the tumor-derived MSCs and tumor-infiltrating neutrophils.The emerging roles of CAFs in cancer immunoeditting led us to investigate whether GC-MSCs are able to regulate the phenotype and function of neutrophils in gastric cancer. We have shown that there is a reciprocal interaction between GC-MSCs and neutrophils. GC-MSCs enhanced the chemotaxis of peripheral blood-derived neutrophils and protected them from spontaneous apoptosis. GC-MSCs induced the activation of neutrophils to highly express IL-8, CCL2, TNFα, and oncostatin M (OSM), leading to the increase of gastric cancer cell migration and angiogenesis in vitro. GC-MSCs exerted this effect through the IL-6–STAT3–ERK1/2 signaling axis, and blockade of the IL-6–IL-6R interaction or pharmacological inhibition of STAT3 and ERK1/2 activation abrogated this role. In turn, GC-MSCs-activated neutrophils could trigger the CAF differentiation of normal MSCs. Therefore, these results establish a bi-directional interaction between GC-MSCs and neutrophils that may be critically involved in the progression of gastric cancer.  相似文献   
964.
965.
Mesenchymal stem cells (MSCs) possess an immunoregulatory capacity and are a therapeutic target for many inflammation‐related diseases. However, the detailed mechanisms of MSC‐mediated immunosuppression remain unclear. In this study, we provide new information to partly explain the molecular mechanisms of immunoregulation by MSCs. Specifically, we found that A20 expression was induced in MSCs by inflammatory cytokines. Knockdown of A20 in MSCs resulted in increased proliferation and reduced adipogenesis, and partly reversed the suppressive effect of MSCs on T cell proliferation in vitro and inhibited tumour growth in vivo. Mechanistic studies indicated that knockdown of A20 in MSCs inhibited activation of the p38 mitogen‐activated protein kinase (MAPK) pathway, which potently promoted the production of tumour necrosis factor (TNF)‐α and inhibited the production of interleukin (IL)‐10. Collectively, these data reveal a crucial role of A20 in regulating the immunomodulatory activities of MSCs by controlling the expression of TNF‐α and IL‐10 in an inflammatory environment. These findings provide novel insights into the pathogenesis of various inflammatory‐associated diseases, and are a new reference for the future development of treatments for such afflictions.  相似文献   
966.
967.
A high-quality reference genome is necessary to determine the molecular mechanisms underlying important biological phenomena; therefore, in the present study, a chromosome-level genome assembly of the Chinese shrimp Fenneropenaeus chinensis was performed. Muscle of a male shrimp was sequenced using PacBio platform, and assembled by Hi-C technology. The assembled F. chinensis genome was 1.47 Gb with contig N50 of 472.84 Kb, including 57.73% repetitive sequences, and was anchored to 43 pseudochromosomes, with scaffold N50 of 36.87 Mb. In total, 25,026 protein-coding genes were predicted. The genome size of F. chinensis showed significant contraction in comparison with that of other penaeid species, which is likely related to migration observed in this species. However, the F. chinensis genome included several expanded gene families related to cellular processes and metabolic processes, and the contracted gene families were associated with virus infection process. The findings signify the adaptation of F. chinensis to the selection pressure of migration and cold environment. Furthermore, the selection signature analysis identified genes associated with metabolism, phototransduction, and nervous system in cultured shrimps when compared with wild population, indicating targeted, artificial selection of growth, vision, and behavior during domestication. The construction of the genome of F. chinensis provided valuable information for the further genetic mechanism analysis of important biological processes, and will facilitate the research of genetic changes during evolution.  相似文献   
968.
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号