Insecticidal activity of NK-17 was evaluated both in laboratory and in field. It was found that the toxicity of NK-17 against S. exigua was 1.93 times and 2.69 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against P. xylostella was 1.36 times and 1.90 times those of hexaflumuron and chlorfluazuron respectively, and the toxicity of NK-17 against M. separate was 18.24 times those of hexaflumuron in laboratory, and 5% NK-17 EC at 60 g a.i ha−1 can control S. exigua and P. xylostella with the best control efficiency of about 89% and over 88% respectively in Changsha and Tianjin in field. The insecticidal mechanism of NK-17 was explored for the first time by utilizing the fluorescence polarization method. NK-17 could bind to sulfonylurea receptor (SUR) of B. germanica with stronger affinity comparing to diflubenzuron and glibenclamide, which suggested that NK-17 may also act on the site of SUR to inhibit the chitin synthesis in insect body and the result can well explain that NK-17 exhibited stronger toxicity against B. germanica than diflubenzuron and glibenclamide in vivo. 相似文献
Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD) through amyloidogenesis. In a previous study, we found that systemic inflammation by intraperitoneal (ip) injection of lipopolysaccharide (LPS) induces neuroinflammation and triggers memory impairment. In this present study, we investigated the inhibitory effects of epigallocatechin-3-gallate (EGCG) on the systemic inflammation-induced neuroinflammation and amyloidogenesis as well as memory impairment. ICR mice were orally administered with EGCG (1.5 and 3 mg/kg) for 3 weeks, and then the mice were treated by ip injection of LPS (250 μg/kg) for 7 days. We found that treatment of LPS induced memory-deficiency-like behavior and that EGCG treatment prevented LPS-induced memory impairment and apoptotic neuronal cell death. EGCG also suppressed LPS-induced increase of the amyloid beta-peptide level and the expression of the amyloid precursor protein (APP), β-site APP cleaving enzyme 1 and its product C99. In addition, we found that EGCG prevented LPS-induced activation of astrocytes and elevation of cytokines including tumor necrosis factor-α, interleukin (IL)-1β, macrophage colony-stimulating factor, soluble intercellular adhesion molecule-1 and IL-16, and the increase of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase-2, which are known factors responsible for not only activation of astrocytes but also amyloidogenesis. In the cultured astrocytes, EGCG also inhibited LPS-induced cytokine release and amyloidogenesis. Thus, this study shows that EGCG prevents memory impairment as well as amyloidogenesis via inhibition of neuroinflammatory-related cytokines released from astrocytes and suggests that EGCG might be a useful intervention for neuroinflammation-associated AD. 相似文献
Adding ethidium bromide (EtBr) at low concentrations to RNA samples before running formaldehyde–agarose gels affords the advantages of checking RNA integrity and evaluating the quality of size-separation at any time during electrophoresis or immediately after either electrophoresis or blotted the separated RNA onto the membrane without significantly compromising mobility, transfer, or hybridization. In this study, we systematically examined the factors that affect the sensitivity of RNA prestaining by heating RNA samples that include EtBr before electrophoresis under different denaturation conditions. We also examined the efficiency of the hybridization of EtBr-prestained RNA with heterologous DNA probes. The results showed that the fluorescent intensity of EtBr-prestained RNA was affected not only by the EtBr concentration as previously reported but also by the RNA amount, denaturation time, and denaturation temperature. Prior staining of RNA with 40 μg/mL EtBr significantly decreased the efficiency of Northern blot hybridization with heterologous DNA probes. We propose that to best combine staining sensitivity and the efficiency of Northern blot hybridization with heterologous DNA probes, the concentration of EtBr used to prestain RNA should not exceed 30 μg/mL. The efficiency of the hybridization of EtBr-prestained RNA was affected not only by factors that affect staining sensitivity but also by the type of probe used. 相似文献
A Gram-stain-positive, orange-pigmented, rod-shaped and flagellated bacterial strain T12T was isolated from wetland soil in Kunyu Mountain Wetland in Yantai, China. The strain was able to grow at 15–40 °C (optimum 37 °C), at 0.0–9.0% NaCl (optimum 2%, w/v) and at pH 5.5–9.0 (optimum 8.5). A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain T12T is a member of the family Planococcaceae, sharing 97.6% and 97.1% sequence similarity with the type strains of Jeotgalibacillus salarius and Jeotgalibacillus marinus, respectively. Genome-based analyses revealed a genome size of 3,506,682 bp and a DNA G?+?C content of 43.7%. Besides, the genome sequence led to 55.0–74.6% average amino acid identity values and 67.8–74.7% average nucleotide identity values between strain T12T and the current closest relatives. Digital DNA-DNA hybridization of strain T12T with the type strains of Jeotgalibacillus proteolyticus and J. marinus demonstrated 19.0% and 20.3% relatedness, respectively. The chemotaxonomic analysis showed that the sole quinone was MK-7. The predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, C16:1ω7c alcohol and iso-C14:0. The polar lipids consisted of an unidentified aminolipid, phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Based on the polyphasic characterization, strain T12T is considered to represent a novel species, for which the name Jeotgalibacillus aurantiacus sp. nov. is proposed. The type strain is T12T (=?KCTC 43296 T?=?MCCC 1K07171T).
A las-like quorum-sensing system in Pseudomonas sp. M18 was identified, which consisted of lasI and lasR genes encoding LuxI-LuxR type regulator. Several functions of the las system from strain M18 were investigated in this study. The chromosomal inactivation of either lasI or lasR by recombination increased the production of both pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA) by 4-5 fold and 2-3 fold over that of the wild type strain of M18, respectively. Production of both antibiotics was restored to wild-type levels after in trans complementation with the wild-type lasI or lasR gene. Ex-pression of the translational fusions pltA1523;-1523;lacZ and phzA1523;-1523;lacZ further confirmed the negative effect of lasI or lasR on both biosynthetic operons, and it was also demonstrated that the las system was related to the ability of swarming motility and the inhibition of cell growth. 相似文献
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1. 相似文献
The 3′ untranslated region (3′UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3′UTR and the host ribosome. The 3′UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3′UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3′UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation. 相似文献
IFN-kappa is a recently identified type I IFN that exhibits both structural and functional homology with the other type I IFN subclasses. In this study, we have investigated the effect of IFN-kappa on cells of the innate immune system by comparing cytokine release following treatment of human cells with either IFN-kappa or two recombinant IFN subtypes, IFN-beta and IFN-alpha2a. Although IFN-alpha2a failed to stimulate monocyte cytokine secretion, IFN-kappa, like IFN-beta, induced the release of several cytokines from both monocytes and dendritic cells, without the requirement of a costimulatory signal. IFN-kappa was particularly effective in inhibiting inducible IL-12 release from monocytes. Unlike IFN-beta, IFN-kappa did not induce release of IFN-gamma by PBL. Expression of the IFN-kappa mRNA was observed in resting dendritic cells and monocytes, and it was up-regulated by IFN-gamma stimulation in monocytes, while IFN-beta mRNA was minimally detectable under the same conditions. Monocyte and dendritic cell expression of IFN-kappa was also confirmed in vivo in chronic lesions of psoriasis vulgaris and atopic dermatitis. Finally, biosensor-based binding kinetic analysis revealed that IFN-kappa, like IFN-beta, binds strongly to heparin (K(d): 2.1 nM), suggesting that the cytokine can be retained close to the local site of production. The pattern of cytokines induced by IFN-kappa in monocytes, coupled with the unique induction of IFN-kappa mRNA by IFN-gamma, indicates a potential role for IFN-kappa in the regulation of immune cell functions. 相似文献