首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16561篇
  免费   1524篇
  国内免费   1789篇
  2024年   53篇
  2023年   237篇
  2022年   557篇
  2021年   803篇
  2020年   623篇
  2019年   791篇
  2018年   728篇
  2017年   546篇
  2016年   771篇
  2015年   1087篇
  2014年   1278篇
  2013年   1314篇
  2012年   1522篇
  2011年   1424篇
  2010年   866篇
  2009年   773篇
  2008年   945篇
  2007年   834篇
  2006年   741篇
  2005年   622篇
  2004年   622篇
  2003年   508篇
  2002年   455篇
  2001年   323篇
  2000年   248篇
  1999年   201篇
  1998年   155篇
  1997年   116篇
  1996年   125篇
  1995年   101篇
  1994年   83篇
  1993年   45篇
  1992年   66篇
  1991年   54篇
  1990年   45篇
  1989年   38篇
  1988年   41篇
  1987年   26篇
  1986年   19篇
  1985年   23篇
  1984年   11篇
  1983年   15篇
  1982年   9篇
  1981年   9篇
  1980年   2篇
  1979年   5篇
  1978年   5篇
  1970年   1篇
  1965年   4篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
131.
The 2015 epidemic of Middle East respiratory syndrome (MERS) in the Republic of Korea has been the largest outbreak outside Middle East. This epidemic had caused 185 laboratory-confirmed cases and 36 deaths in the Republic of Korea until September 2, 2015, which attracted public’s attention. Based on the detailed data of patients released by World Health Organization (WHO) and actual propagation of the epidemic, we construct two dynamical models to simulate the propagation processes from May 20 to June 8 and from June 9 to July 10, 2015, respectively and find that the basic reproduction number R 0 reaches up to 4.422. The numerical analysis shows that the reasons of the outbreak spread quickly are lack of self-protection sense and targeted control measures. Through partial correction analysis, the parameters β 1 and γ have strong correlations with R 0, i.e., the infectivity and proportion of the asymptomatic infected cases have much influence on the spread of disease. By sensitivity analysis, strengthening self-protection ability of susceptible and quickly isolating or monitoring close contacts are effective measures to control the disease.  相似文献   
132.
During orthodontic tooth movement (OTM), periodontal ligament cells (PDLCs) receive the mechanical stimuli and transform it into myofibroblasts (Mfbs). Indeed, previous studies have demonstrated that mechanical stimuli can promote the expression of Mfb marker α-smooth muscle actin (α-SMA) in PDLCs. Transforming growth factor β1 (TGF-β1), as the target gene of yes-associated protein (YAP), has been proven to be involved in this process. Here, we sought to assess the role of YAP in Mfbs differentiation from PDLCs. The time-course expression of YAP and α-SMA was manifested in OTM model in vivo as well as under tensional stimuli in vitro. Inhibition of RhoA/Rho-associated kinase (ROCK) pathway using Y27632 significantly reduced tension-induced Mfb differentiation and YAP expression. Moreover, overexpression of YAP with lentiviral transfection in PDLCs rescued the repression effect of Mfb differentiation induced by Y27632. These data together suggest a crucial role of YAP in regulating tension-induced Mfb differentiation from PDLC interacted with RhoA/ROCK pathway.  相似文献   
133.
Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.  相似文献   
134.
135.
The gut microbiota of intensive care unit (ICU) patients displays extreme dysbiosis associated with increased susceptibility to organ failure, sepsis, and septic shock. However, such dysbiosis is difficult to characterize owing to the high dimensional complexity of the gut microbiota. We tested whether the concept of enterotype can be applied to the gut microbiota of ICU patients to describe the dysbiosis. We collected 131 fecal samples from 64 ICU patients diagnosed with sepsis or septic shock and performed 16S rRNA gene sequencing to dissect their gut microbiota compositions. During the development of sepsis or septic shock and during various medical treatments, the ICU patients always exhibited two dysbiotic microbiota patterns, or ICU-enterotypes, which could not be explained by host properties such as age, sex, and body mass index, or external stressors such as infection site and antibiotic use. ICU-enterotype I (ICU E1) comprised predominantly Bacteroides and an unclassified genus of Enterobacteriaceae, while ICU-enterotype II (ICU E2) comprised predominantly Enterococcus. Among more critically ill patients with Acute Physiology and Chronic Health Evaluation II (APACHE II) scores > 18, septic shock was more likely to occur with ICU E1 (P = 0.041). Additionally, ICU E1 was correlated with high serum lactate levels (P = 0.007). Therefore, different patterns of dysbiosis were correlated with different clinical outcomes, suggesting that ICU-enterotypes should be diagnosed as independent clinical indices. Thus, the microbial-based human index classifier we propose is precise and effective for timely monitoring of ICU-enterotypes of individual patients. This work is a first step toward precision medicine for septic patients based on their gut microbiota profiles.  相似文献   
136.
137.
Imitation Switch (ISWI) chromatin remodelers are known to function in diverse multi‐subunit complexes in yeast and animals. However, the constitution and function of ISWI complexes in Arabidopsis thaliana remain unclear. In this study, we identified forkhead‐associated domain 2 (FHA2) as a plant‐specific subunit of an ISWI chromatin‐remodeling complex in Arabidopsis. By in vivo and in vitro analyses, we demonstrated that FHA2 directly binds to RLT1 and RLT2, two redundant subunits of the ISWI complex in Arabidopsis. The stamen filament is shorter in the fha2 and rlt1/2 mutants than in the wild type, whereas their pistil lengths are comparable. The shorter filament, which is due to reduced cell size, results in insufficient pollination and reduced fertility. The rlt1/2 mutant shows an early‐flowering phenotype, whereas the phenotype is not shared by the fha2 mutant. Consistent with the functional specificity of FHA2, our RNA‐seq analysis indicated that the fha2 mutant affects a subset of RLT1/2‐regulated genes that does not include genes involved in the regulation of flowering time. This study demonstrates that FHA2 functions as a previously uncharacterized subunit of the Arabidopsis ISWI complex and is exclusively involved in regulating stamen development and plant fertility.  相似文献   
138.
139.
140.
Increased expression and activity of cardiac and circulating cathepsin D and soluble fms‐like tyrosine kinase‐1 (sFlt‐1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23‐kD prolactin (PRL) to 16‐kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY‐411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt‐1, reduced Hes1, phosphorylated Stat3 (p‐Stat3), VEGFA and PDGFB, and promoted cleavage of 23k‐D PRL to 16‐kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt‐1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号