首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9404篇
  免费   915篇
  国内免费   980篇
  2024年   17篇
  2023年   92篇
  2022年   167篇
  2021年   394篇
  2020年   311篇
  2019年   344篇
  2018年   371篇
  2017年   302篇
  2016年   417篇
  2015年   619篇
  2014年   733篇
  2013年   744篇
  2012年   891篇
  2011年   883篇
  2010年   534篇
  2009年   472篇
  2008年   607篇
  2007年   541篇
  2006年   466篇
  2005年   437篇
  2004年   412篇
  2003年   314篇
  2002年   313篇
  2001年   183篇
  2000年   141篇
  1999年   118篇
  1998年   83篇
  1997年   69篇
  1996年   48篇
  1995年   39篇
  1994年   34篇
  1993年   19篇
  1992年   30篇
  1991年   25篇
  1990年   20篇
  1989年   17篇
  1988年   18篇
  1987年   10篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   12篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1965年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
ATP has been known to act as an extracellular signal and to be involved in various functions of kidney. Renal proximal tubular reabsorption of phosphate (Pi) contributes to the maintenance of phosphate homeostasis, which is regulated by Na+/Pi cotransporter. However, the effects of ATP on Na+/Pi cotransporters were not elucidated in proximal tubule cells (PTCs). Thus, the effects of ATP on Na+/Pi cotransporter and its related signal pathways are examined in the primary cultured renal PTCs. In the present study, ATP inhibited Pi uptake in a time (> 1 h) and dose (>10(-6)M) dependent manner. ATP-induced inhibition of Pi uptake was correlated with the decrease of type II Na+/Pi cotransporter mRNA. ATP-induced inhibition of Pi uptake may be mediated by P2Y receptor activation, since suramin (non-specific P2 receptor antagonist) and RB-2 (P2Y receptor antagonist) blocked it. ATP-induced inhibition of Pi uptake was blocked by neomycin, U73122 (phospholipase C (PLC) inhibitors), bisindolylmaleimide I, H-7, and staurosporine (protein kinase C (PKC) inhibitors), suggesting the role of PLC/PKC pathway. ATP also increased inositol phosphates (IPs) formation and induced PKC translocation from cytosolic fraction to membrane fraction. In addition, ATP-induced inhibition of Pi uptake was blocked by SB 203580 [a p38 mitogen activated protein kinase (MAPK) inhibitor], but not by PD 98059 (a p44/42 MAPK inhibitor). Indeed, ATP induced phosphorylation of p38 MAPK, which was not blocked by PKC inhibitor. In conclusion, ATP inhibited Pi uptake via PLC/PKC as well as p38 MAPK in renal PTCs.  相似文献   
992.
Spinach is a vegetable with a high oxalate concentration in its tissues. Oxalate efflux from spinach (Spinacia oleracea L. cv. Quanneng) roots was rapidly stimulated (within 30 min) by aluminium (Al) treatment. The efflux was constant within 6 h, but increased with increasing Al concentration. The efflux was confined to the root tip (0-5 mm), which showed a 5-fold greater efflux than the root zone distal to the tip (5-10 mm). Oxalate efflux could not be triggered by treatment with the trivalent cation lanthanum or by phosphorus deficiency, indicating that the efflux was specific to the Al treatment. All this evidence suggested that spinach possesses Al-resistance mechanisms. However, spinach was found to be as sensitive to Al toxicity as the Al-sensitive wheat line ES8, which had no Al-dependent organic acids efflux. The Al accumulated in the apical 5 mm of the roots of spinach which was also similar to that in the Al-sensitive wheat after 24 h treatment with 50 microM AlCl(3), indicating a non-exclusion mechanism. In addition, root elongation in spinach was significantly inhibited at pH 4.5, compared with that at pH 6.5. Based on this evidence, it is concluded that the sensitivity to acid stress in spinach could mask the potential role for oxalate to protect the plant roots from Al toxicity.  相似文献   
993.
994.
The heme-regulated inhibitor of protein synthesis (HRI) regulates translation through the phosphorylation of the alpha-subunit of eukaryotic initiation factor-2 (eIF 2). While HRI is best known for its activation in response to heme-deficiency, we recently showed that the binding of NO and CO to the N-terminal heme-binding domain (NT-HBD) of HRI activated and suppressed its activity, respectively. Here, we examined the effect of hemin, NO, and CO on the interaction between the NT-HBD and the catalytic domain of HRI (HRI/Delta HBD). Hemin stabilized the interaction of NT-HBD with HRI/Delta HBD, and NO and CO disrupted and stabilized this interaction, respectively. Mutant HRI (Delta H-HRI), lacking amino acids 116-158 from the NT-HBD, was less sensitive to heme-induced inhibition, and mutant NT-HBD lacking these residues did not bind to HRI/Delta HBD. HRI/Delta HBD and Delta H-HRI also activated more readily than HRI in response to heme-deficiency. Thus, HRI's activity is regulated through the modulation of the interaction between its NT-HBD and catalytic domain.  相似文献   
995.
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.  相似文献   
996.
Joo JH  Yoo HJ  Hwang I  Lee JS  Nam KH  Bae YS 《FEBS letters》2005,579(5):1243-1248
We recently reported that production of reactive oxygen species (ROS) is essential for auxin-induced gravitropic signaling. Here, we investigated the role of phosphatidylinositol 3-kinase and its product, PtdIns(3)P, in auxin-mediated ROS production and the root gravitropic response. Pretreatment with LY294002, an inhibitor of PtdIns 3-kinase activity, blocked auxin-mediated ROS generation, and reduced the sensitivity of root tissue to gravistimulation. The amount of PtdIns(3)P increased in response to auxin, and this effect was abolished by pretreatment with LY294002. In addition, sequestration of PtdIns(3)P by transient expression of the endosome binding domain in protoplasts abrogated IAA-induced ROS accumulation. These results indicate that activation of PtdIns 3-kinase and its product PtdIns(3)P are required for auxin-induced production of ROS and root gravitropism.  相似文献   
997.
Cigarette-induced endothelial dysfunction could be an early mediator of atherosclerosis. In this study, we explored the mechanisms of cigarette smoke extract (CSE)-induced human aortic endothelial cells (HAEC) apoptosis. We found that 10-65% of HAECs underwent apoptotic changes when HAECs were exposed to 0.001-0.02 cigarette equivalent unit of CSE for 4 h. CSE activated the caspases-3 and 8, the p38 MAP kinase and stress activated protein kinase/c-Jun N-terminal protein kinase (SAPK/JNK). Specific inhibitors of p38 MAP or SAPK/JNK reduced CSE-induced caspase activation. We further showed that eNOS pre-activation by L-arginine reduced endothelial apoptosis from 65% to 5%; and eNOS inhibition by N-omega-nitro-L-arginine methyl ester accentuated CSE-induced endothelial apoptosis. We suggest that appropriate endogenous NO production may be an important protective mechanism against smoking-induced endothelial damage.  相似文献   
998.
999.
Ahn T  Yun CH  Oh DB 《Biochemistry》2005,44(25):9188-9196
The effect of nonlamellar-prone lipids, diacylglycerol (DG) and phosphatidylethanolamine (PE), on the stability of human cytochrome P450 1A2 (CYP1A2) was examined. When 100% phosphatidylcholine (PC) in standard vesicles was gradually replaced with either DG or PE, the stability of CYP1A2 increased; the incubation time-dependent destruction of spectrally detectable P450, decrease of catalytic activity, reduction of intrinsic fluorescence, and increased sensitivity to trypsin digestion were significantly alleviated. The ternary system of PC/PE/DG increased the stability of CYP1A2 more, even at lower concentrations of each nonlamellar-prone lipid, than that of the binary lipid mixture (PC/nonlamellar lipid). By incorporating the nonlamellar-prone lipids, the CYP1A2-induced increase of the surface pressure of the lipid monolayer was much higher compared to that for 100% PC. Increased surface pressure indicates a deep insertion of the protein into lipid monolayers. Nonlamellar lipids also increased the transition temperature of CYP1A2 in thermal unfolding and reduced the incubation time-dependent detachment of membrane-bound CYP1A2 from vesicles. Taken together, these results suggest that nonlamellar lipids per se and/or the phase properties of the membrane containing these lipids are important in the enhanced stability of CYP1A2 and the concomitant maintenance of catalytic activity of the protein.  相似文献   
1000.
p21-Activated kinase 1 (PAK1), a member of the evolutionarily conserved PAK family of serine/threonine kinases, is essential for a variety of cellular functions. Our previous studies showed that PAK1 participated in the apoptotic pathway mediated by p110C. To further investigate its functions, we used the yeast two-hybrid system to screen a human fetal brain cDNA library and identified dynein light chain 2 (DLC2)/myosin light chain (MLC) as an interacting partner of PAK1. The association of PAK1 with DLC2 was further confirmed by in vitro binding assay. With the stimulation of EGF, PAK1 interacted with HA-DLC2 in vivo and relocalized in cytoplasm near the perinuclear location in confocal microscope analysis. The deletion analysis showed that the interaction of DLC2 with PAK1 occurred within the residues 210-332 of PAK1. For that studies showed that DLC2 was a subunit of myosin complex, so it is possible that PAK1 binds to DLC2 and transports by myosin complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号