首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9167篇
  免费   904篇
  国内免费   960篇
  2024年   21篇
  2023年   84篇
  2022年   207篇
  2021年   380篇
  2020年   301篇
  2019年   344篇
  2018年   362篇
  2017年   295篇
  2016年   402篇
  2015年   595篇
  2014年   710篇
  2013年   720篇
  2012年   859篇
  2011年   866篇
  2010年   524篇
  2009年   455篇
  2008年   599篇
  2007年   533篇
  2006年   461篇
  2005年   428篇
  2004年   401篇
  2003年   309篇
  2002年   298篇
  2001年   178篇
  2000年   137篇
  1999年   114篇
  1998年   84篇
  1997年   63篇
  1996年   45篇
  1995年   37篇
  1994年   33篇
  1993年   18篇
  1992年   24篇
  1991年   22篇
  1990年   17篇
  1989年   17篇
  1988年   17篇
  1987年   10篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   8篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   6篇
  1970年   3篇
  1965年   4篇
  1945年   1篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
81.
Understanding changes in terrestrial carbon balance is important to improve our knowledge of the regional carbon cycle and climate change. However, evaluating regional changes in the terrestrial carbon balance is challenging due to the lack of surface flux measurements. This study reveals that the terrestrial carbon uptake over the Republic of Korea has been enhanced from 1999 to 2017 by analyzing long‐term atmospheric CO2 concentration measurements at the Anmyeondo Station (36.53°N, 126.32°E) located in the western coast. The influence of terrestrial carbon flux on atmospheric CO2 concentrations (ΔCO2) is estimated from the difference of CO2 concentrations that were influenced by the land sector (through easterly winds) and the Yellow Sea sector (through westerly winds). We find a significant trend in ΔCO2 of ?4.75 ppm per decade (p < .05) during the vegetation growing season (May through October), suggesting that the regional terrestrial carbon uptake has increased relative to the surrounding ocean areas. Combined analysis with satellite measured normalized difference vegetation index and gross primary production shows that the enhanced carbon uptake is associated with significant nationwide increases in vegetation and its production. Process‐based terrestrial model and inverse model simulations estimate that regional terrestrial carbon uptake increases by up to 18.9 and 8.0 Tg C for the study period, accounting for 13.4% and 5.7% of the average annual domestic carbon emissions, respectively. Atmospheric chemical transport model simulations indicate that the enhanced terrestrial carbon sink is the primary reason for the observed ΔCO2 trend rather than anthropogenic emissions and atmospheric circulation changes. Our results highlight the fact that atmospheric CO2 measurements could open up the possibility of detecting regional changes in the terrestrial carbon cycle even where anthropogenic emissions are not negligible.  相似文献   
82.
In higher‐latitude trees, temperature and photoperiod control the beginning and end of the photosynthetically active season. Elevated temperature (ET) has advanced spring warming and delayed autumn cooling while photoperiod remains unchanged. We assessed the effects of warming on the length of the photosynthetically active season of three provenances of Pinus strobus L. seedlings from different latitudes, and evaluated the accuracy of the photochemical reflectance index (PRI) and the chlorophyll/carotenoid index (CCI) for tracking the predicted variation in spring and autumn phenology of photosynthesis among provenances. Seedlings from northern, local and southern P. strobus provenances were planted in a temperature‐free‐air‐controlled enhancement (T‐FACE) experiment and exposed to ET (+1.5/3°C; day/night). Over 18 months, we assessed photosynthetic phenology by measuring chlorophyll fluorescence, gas exchange, leaf spectral reflectance and pigment content. During autumn, all seedlings regardless of provenance followed the same sequence of phenological events with the initial downregulation of photosynthesis, followed by the modulation of non‐photochemical quenching and associated adjustments of zeaxanthin pool sizes. However, the timing of autumn downregulation differed between provenances, with delayed onset in the southern provenance (SP) and earlier onset in the northern relative to the local provenance, indicating that photoperiod at the provenance origin is a dominant factor controlling autumn phenology. Experimental warming further delayed the downregulation of photosynthesis during autumn in the SP. A provenance effect during spring was also observed but was generally not significant. The vegetation indices PRI and CCI were both effective at tracking the seasonal variations of energy partitioning in needles and the differences of carotenoid pigments indicative of the stress status of needles. These results demonstrate that PRI and CCI can be useful tools for monitoring conifer phenology and for the remote monitoring of the length of the photosynthetically active season of conifers in a changing climate.  相似文献   
83.
Alteration of the gut microbiota plays an important role in animal health and metabolic diseases. However, little is known with respect to the influence of environmental osmolality on the gut microbial community. The aim of the current study was to determine whether the reduction in salinity affects the gut microbiota and identify its potential role in salinity acclimation. Using Oryzias melastigma as a model organism to perform progressive hypotonic transfer experiments, we evaluated three conditions: seawater control (SW), SW to 50% sea water transfer (SFW) and SW to SFW to freshwater transfer (FW). Our results showed that the SFW and FW transfer groups contained higher operational taxonomic unit microbiota diversities. The dominant bacteria in all conditions constituted the phylum Proteobacteria, with the majority in the SW and SFW transfer gut comprising Vibrio at the genus level, whereas this population was replaced by Pseudomonas in the FW transfer gut. Furthermore, our data revealed that the FW transfer gut microbiota exhibited a reduced renin–angiotensin system, which is important in SW acclimation. In addition, induced detoxification and immune mechanisms were found in the FW transfer gut microbiota. The shift of the bacteria community in different osmolality environments indicated possible roles of bacteria in facilitating host acclimation.  相似文献   
84.
85.
86.
Nisar  M.  Ali  Z.  Ali  A.  Aman  R.  Park  H. J.  Ullah  I.  Ullah  A.  Yun  D. J. 《Russian Journal of Plant Physiology》2020,67(3):515-520
Russian Journal of Plant Physiology - Plant root architecture modulates during developmental stages and adjusts with the environmental condition. The cytosolic calcium which is a ubiquitous...  相似文献   
87.
88.
89.
90.
Atg3‐catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N‐terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号