首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132227篇
  免费   22376篇
  国内免费   9183篇
  2024年   180篇
  2023年   1353篇
  2022年   3172篇
  2021年   5893篇
  2020年   5601篇
  2019年   7975篇
  2018年   7931篇
  2017年   7145篇
  2016年   8460篇
  2015年   10468篇
  2014年   11561篇
  2013年   12355篇
  2012年   11738篇
  2011年   10700篇
  2010年   8333篇
  2009年   6755篇
  2008年   6559篇
  2007年   5439篇
  2006年   4725篇
  2005年   3942篇
  2004年   3342篇
  2003年   2969篇
  2002年   2515篇
  2001年   2101篇
  2000年   1822篇
  1999年   1787篇
  1998年   1000篇
  1997年   1032篇
  1996年   927篇
  1995年   853篇
  1994年   751篇
  1993年   618篇
  1992年   755篇
  1991年   595篇
  1990年   517篇
  1989年   379篇
  1988年   310篇
  1987年   247篇
  1986年   221篇
  1985年   228篇
  1984年   146篇
  1983年   142篇
  1982年   70篇
  1981年   40篇
  1980年   28篇
  1979年   40篇
  1978年   11篇
  1977年   10篇
  1976年   11篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
191.
192.
The CDKN1C gene encodes a cyclin‐dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith–Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele‐specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (< 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.  相似文献   
193.
194.
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+-ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+-ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+-ATPase, which is required for rice P use.  相似文献   
195.
  相似文献   
196.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use.  相似文献   
197.
198.
199.
A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF‐7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC‐27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound 17b exhibited the most potent activity (IC50 4.6 μM) against HGC‐27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. Chirality 27:177–188, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   
200.
Although Ficus (Moraceae) is a keystone plant genus in the tropics, providing resources to many frugivorous vertebrates, its population genetic structure, which is an important determinant of its long‐term survival, has rarely been investigated. We examined the population genetic structure of two dioecious fig species (Ficus hispida and Ficus exasperata) in the Indian Western Ghats using co‐dominant nuclear microsatellite markers. We found high levels of microsatellite genetic diversity in both species. The regression slopes between genetic relationship coefficients (fij) and spatial distances were significantly negative in both species indicating that, on average, individuals in close spatial proximity were more likely to be related than individuals further apart. Mean parent–offspring distance (σ) calculated using these slopes was about 200 m in both species. This should be contrasted with the very long pollen dispersal distances documented for monoecious Ficus species. Nevertheless, overall population genetic diversity remained large suggesting immigrant gene flow. Further studies will be required to analyze broader scale patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号