首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   63篇
  2022年   8篇
  2021年   22篇
  2020年   8篇
  2019年   9篇
  2018年   17篇
  2017年   13篇
  2016年   25篇
  2015年   32篇
  2014年   40篇
  2013年   55篇
  2012年   87篇
  2011年   79篇
  2010年   54篇
  2009年   47篇
  2008年   74篇
  2007年   80篇
  2006年   81篇
  2005年   75篇
  2004年   74篇
  2003年   69篇
  2002年   72篇
  2001年   13篇
  2000年   13篇
  1999年   10篇
  1998年   16篇
  1997年   8篇
  1996年   12篇
  1995年   9篇
  1994年   5篇
  1993年   10篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   5篇
  1985年   4篇
  1984年   1篇
  1983年   4篇
  1982年   5篇
  1981年   10篇
  1980年   1篇
  1978年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1178条查询结果,搜索用时 15 毫秒
171.
172.
Disconnected (disco)-interacting protein 2 homolog A is a member of the DIP2 protein family encoded by Dip2a gene. Dip2a expression pattern has never been systematically studied. Functions of Dip2a in embryonic development and adult are not known. To investigate Dip2a gene expression and function in embryo and adult, a Dip2a-LacZ mouse model was generated by insertion of β-Gal cDNA after Dip2a promoter using CRISPR/Cas9 technology. Dip2a-LacZ mouse was designed to be a lacZ reporter mouse as well as a Dip2a knockout mouse. Heterozygous mice were used to study endogenous Dip2a expression and homozygotes to study DIP2A-associated structure and function. LacZ staining indicated that Dip2a is broadly expressed in neuronal, reproductive and vascular tissues, as well as in heart, kidney, liver and lung. Results demonstrate that Dip2a is expressed in ectoderm-derived tissues in developing embryos. Adult tissues showed rich staining in neurons, mesenchymal, endothelial, smooth muscle cells and cardiomyocytes by cell types. The expression pattern highly overlaps with FSTL1 and supports previous report that DIP2A to be potential receptor of FSTL1 and its protective roles of cardiomyocytes. Broad and intense embryonic and adult expression of Dip2a has implied their multiple structural and physiological roles.  相似文献   
173.
Root exudate of Vigna unguiculata was extracted from a soil system consisting of charcoal and vermiculite. Germination stimulating activity for Striga gesnerioides was found in extracts of the soil system, and an active compound was isolated. The chemical structure of the active ingredient was determined to be (+)-4-O-acetylorobanchol, based on analysis of the spectral data of 1-D and 2-D NMR together with nuclear Overhauser effect (NOE) experiments. Application of the active compound to the seeds of S. gesnerioides at a concentration of 0.35 × 10−9 mol/disk led to 69% germination. The germination observed with application of GR-24, a positive control, at 0.57 × 10−10 mol/disk was 80%.  相似文献   
174.
175.
The minichromosome maintenance (MCM) complex, consisting of six subunits, Mcm2-7, is loaded onto replication origins through loading factors (origin recognition complex [ORC], Cdc6, and Cdt1) and forms an MCM double hexamer that licenses the initiation of DNA replication. Previous studies with Xenopus egg extracts showed that loading factors, especially Cdc6, dissociate from chromatin on MCM loading, but the molecular mechanism and physiological significance remain largely unknown. Using a cell-free system for MCM loading onto plasmid DNA in Xenopus egg extracts, we found that MCM loaded onto DNA prevents DNA binding of the loading factors ORC, Cdc6, and Cdt1. We further report that a peptide of the C-terminal region of MCM3 (MCM3-C), previously implicated in the initial association with ORC/Cdc6 in budding yeast, prevents ORC/Cdc6/Cdt1 binding to DNA in the absence of MCM loading. ATP-γ-S suppresses inhibitory activities of both the MCM loaded onto DNA and the MCM3-C peptide. Other soluble factors in the extract, but neither MCM nor Cdt1, are required for the activity. Conservation of the amino acid sequences of MCM3-C and its activity in vertebrates implies a novel negative autoregulatory mechanism that interferes with MCM loading in the vicinity of licensed origins to ensure proper origin licensing.  相似文献   
176.
177.
Phytopathogenic fungi infections induce plant defence responses that mediate changes in metabolic and signalling processes with severe consequences for plant growth and development. Sphaeropsis tip blight, induced by the endophytic fungus Sphaeropsis sapinea that spreads from stem tissues to the needles, is the most widespread disease of conifer forests causing dramatic economic losses. However, metabolic consequences of this disease on bark and wood tissues of its host are largely unexplored. Here, we show that diseased host pines experience tissue dehydration in both bark and wood. Increased cytokinin and declined indole‐3‐acetic acid levels were observed in both tissues and increased jasmonic acid and abscisic acid levels exclusively in the wood. Increased lignin contents at the expense of holo‐cellulose with declined structural biomass of the wood reflect cell wall fortification by S. sapinea infection. These changes are consistent with H2O2 accumulation in the wood, required for lignin polymerization. Accumulation of H2O2 was associated with more oxidized redox states of glutathione and ascorbate pools. These findings indicate that S. sapinea affects both phytohormone signalling and the antioxidative defence system in stem tissues of its pine host during the infection process.  相似文献   
178.
It has been reported that the rejection of tumor allografts is mainly mediated by cytotoxic T lymphocytes (CTLs). Here, we characterized the cytotoxic effector cells of C57BL/6 (B6; H-2b) mice infiltrating into the rejection site of the i.p. allografted Meth A fibrosarcoma (or P815 mastocytoma) cells of H-2d origin. Two types of cytotoxic cells (i.e., CD8+ CTLs and macrophages (Mφs)) were identified by flow cytometric fractionation of the infiltrates or by specific in vitro elimination of cells either with antibody (Ab)-coated beads or with an Ab-plus complement. Of particular interest, these effector cells showed distinct and unique target specificities. First, the CTLs were inactive against transplanted tumor (e.g., Meth A) cells, whereas they were cytotoxic against donor-related concanavalin A (Con A) blasts as well as CTLL-2 (H-2b) cells transfected with a class I gene of H-2d origin. A cold target competition assay suggested that the CTLs were composed of multiple sets of T cells, each of which specifically recognized different allo-antigens. Second, the Mφs lysed the allografted tumor cells but were inert toward the Con A blasts and the CTLL-2 transfectants. Unexpectedly, the infiltration of Mφs preceded the infiltration of CTLs by several days during the course of rejection. These results indicate that two distinct populations of unique cytotoxic cells (i.e., CTLs and Mφs) are induced in the allografted tumor rejection site, and that the infiltration of cytotoxic Mφs responsible for rejection precedes that of the CTLs cytotoxic against cells expressing donor-related allo-antigens.  相似文献   
179.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   
180.
We previously reported l ‐α‐aminooxy‐phenylpropionic acid (AOPP) to be an inhibitor of auxin biosynthesis, but its precise molecular target was not identified. In this study we found that AOPP targets TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1). We then synthesized 14 novel compounds derived from AOPP to study the structure–activity relationships of TAA1 inhibitors in vitro. The aminooxy and carboxy groups of the compounds were essential for inhibition of TAA1 in vitro. Docking simulation analysis revealed that the inhibitory activity of the compounds was correlated with their binding energy with TAA1. These active compounds reduced the endogenous indole‐3‐acetic acid (IAA) content upon application to Arabidopsis seedlings. Among the compounds, we selected 2‐(aminooxy)‐3‐(naphthalen‐2‐yl)propanoic acid (KOK1169/AONP) and analyzed its activities in vitro and in vivo. Arabidopsis seedlings treated with KOK1169 showed typical auxin‐deficient phenotypes, which were reversed by exogenous IAA. In vitro and in vivo experiments indicated that KOK1169 is more specific for TAA1 than other enzymes, such as phenylalanine ammonia‐lyase. We further tested 41 novel compounds with aminooxy and carboxy groups to which we added protection groups to increase their calculated hydrophobicity. Most of these compounds decreased the endogenous auxin level to a greater degree than the original compounds, and resulted in a maximum reduction of about 90% in the endogenous IAA level in Arabidopsis seedlings. We conclude that the newly developed compounds constitute a class of inhibitors of TAA1. We designated them ‘pyruvamine’.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号