首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1527篇
  免费   93篇
  2022年   8篇
  2021年   23篇
  2020年   8篇
  2019年   12篇
  2018年   20篇
  2017年   23篇
  2016年   31篇
  2015年   42篇
  2014年   54篇
  2013年   73篇
  2012年   103篇
  2011年   101篇
  2010年   65篇
  2009年   49篇
  2008年   92篇
  2007年   99篇
  2006年   101篇
  2005年   88篇
  2004年   95篇
  2003年   85篇
  2002年   95篇
  2001年   34篇
  2000年   26篇
  1999年   25篇
  1998年   24篇
  1997年   14篇
  1996年   15篇
  1995年   11篇
  1994年   12篇
  1993年   11篇
  1992年   19篇
  1991年   14篇
  1990年   16篇
  1989年   13篇
  1988年   19篇
  1987年   13篇
  1986年   10篇
  1985年   5篇
  1984年   12篇
  1983年   8篇
  1982年   6篇
  1981年   17篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1971年   3篇
  1970年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有1620条查询结果,搜索用时 15 毫秒
71.
The wild type of Selenomonas ruminantium subsp. lactilytica, which is a strictly anaerobic, Gram-negative bacterium isolated from sheep rumen, requires one of the normal saturated volatile fatty acids with 3 to 10 carbon atoms for its growth in a glucose medium; however, no such obligate requirement of fatty acid is observed when the cells are grown in a lactate medium. This bacterium is characterized by a unique structure of the cell envelope and a novel lysine decarboxylase and its regulatory protein. In the first part of this article, we will refer to the chemical structure of phospholipid and lipopolysaccharide in the cell membranes of this bacterium compared with that from the general Gram-negative bacteria for understanding their biological functions. S. ruminantium has neither free nor bound forms of Braun lipoprotein which plays an important role of the maintenance of the structural integrity of the cell surface in general Gram-negative bacteria. However, S. ruminantium has cadaverine, which links covalently to the peptidoglycan as a pivotal constituent for the cell division. In the second part of this article, we will refer to the chemical structure of the cadaverine-containing peptidoglycan, its biosynthesis, and the biological function. In the third part of this article, we will depict the molecular cloning of the genes encoding S. ruminanitum lysine decarboxylase (LDC) and its regulatory protein of 22-kDa (22-kDa protein; P22) which has similar characteristics to that of antizyme of ornithine decarboxylase in eukaryotic cells, and the molecular dissection of these proteins for understanding the regulation of cadaverine biosynthesis. Finally, we will illustrate a proposed structure of the cell envelope, a processes of biosynthesis of the cadaverine-containing peptidoglycan layer, and the LDC degradation mechanism in S. ruminantium, on the basis of the analyses of the cell envelope components, the results from the in vitro experiments on the biosynthesis of the peptidoglycan layer, and the current status of the knowledge on LDC and P22 in this organism.  相似文献   
72.
Six cadmium(II) halide complexes with dl-piperidine-2-carboxylic acid (DL-Hpipe-2), dl-piperidine-3-carboxylic acid (DL-Hpipe-3), and piperidine-4-carboxylic acid (Hpipe-4), have been prepared and characterized by means of IR and Raman spectra and thermal analysis. The crystal structures of [CdCl2(DL-Hpipe-2)(H2O)], [CdBr2(DL-Hpipe-3)], and [CdCl2(Hpipe-4)] have been determined by X-ray diffraction. These three complexes have one-dimensional polymer structures bridged by halide atoms. The crystal of [CdCl2(DL-Hpipe-2)(H2O)] is orthorhombic with the space group Pca2(1). The cadmium atom is in an octahedral geometry, ligated by a carboxyl oxygen atom, two bridging chlorine atoms, a terminal chlorine atom, a water molecule and a carboxyl oxygen atom of a neighboring molecule. The carboxyl oxygen atoms of DL-Hpipe-2 are coordinated to two cadmium atoms. The unit cell consists of two types of one-dimensional polymer structures: [CdCl2(D-Hpipe-2)(H2O)] and [CdCl2(L-Hpipe-2)(H2O)]. Therefore, it is better to write [CdCl2(DL-Hpipe-2)(H2O)] as [CdCl2(D-Hpipe-2)(H2O)][CdCl2(L-Hpipe-2)(H2O)]. The crystal structure of [CdBr2(DL-Hpipe-3)] is monoclinic with space group P2(1). The cadmium atom is in a distorted octahedral geometry ligated by two carboxyl oxygen atoms and four bridging bromine atoms. This complex consists of either D-Hpipe-3 or L-Hpipe-3. Therefore [CdBr2(DL-Hpipe-3)] is written as [CdBr2(D or L-Hpipe-3)]. The crystal of [CdCl2(Hpipe-4)] is monoclinic with space group P2(1)/n. The structure is similar to that of [CdBr2(D or L-Hpipe-3)].  相似文献   
73.
Arabidopsis var1 and var2 mutants exhibit leaf variegation. VAR1 and VAR2 encode similar FtsH metalloproteases (FtsH5 and FtsH2, respectively). We have previously found many variegated mutants to be allelic to var2. Each mutant was shown to express a different degree of variegation, and the formation of white sectors was enhanced in severely variegated alleles when these alleles were grown at low temperature. VAR1/FtsH5 and VAR2/FtsH2 levels were mutually affected even in the weak alleles, confirming our previous observation that the two proteins form a hetero complex. In this study, the sites of the mutations in these var2 alleles were determined. We isolated eight point mutations. Five alleles resulted in an amino acid substitution. Three of the five amino acid substitutions occurred in Walker A and B motifs of the ATP-binding site, and one occurred in the central pore motif. These mutations were considered to profoundly suppress the ATPase and protease activities. In contrast, one mutation was found in a region that contained no obvious signature motifs, but a neighboring sequence, Gly–Ala–Asp, was highly conserved among the members of the AAA protein family. Site-directed mutagenesis of the corresponding residue in E. coli FtsH indeed showed that this residue is necessary for proper ATP hydrolysis and proteolysis. Based on these results, we propose that the conserved Gly–Ala–Asp motif plays an important role in FtsH activity. Thus, characterization of the var2 alleles could help to identify the physiologically important domain of FtsH.  相似文献   
74.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   
75.
We have been conducting a mouse cDNA project to predict protein-coding sequences of mouse KIAA-homologous genes since 2001. As an extension of this project, we also started to accumulate mouse cDNA clones homologous to the human FLJ cDNA clones which are another long cDNA resource produced in our institute. We have isolated the cDNA clones from size-fractionated cDNA libraries derived from five different mouse tissues and natural killer T-cells. Although the human FLJ cDNA clones were originally derived from human spleen libraries, one-third of their mouse homologues were obtained from the brain library. We designated these homologues "mFLJ" plus a 5-digit number and herein characterized 110 mFLJ cDNA clones. We assigned an integrity of the CDSs from the comparison of the 110 cDNA clones with the corresponding human FLJ cDNA clones. The average size of the 110 mouse cDNA sequences was 3.8 kb and that of the deduced amino acid sequences from their longest CDS in each cDNA was 663 amino acid residues. Homology and/or motif search against public databases revealed new domains and/or motifs in 26 mFLJ gene products which provide additional speculation regarding the function of FLJ genes.  相似文献   
76.
Oncogenic RAS mutants such as v-Ha-RAS induce cell cycling, in particular the G1 to S transition, by upregulating cyclin D1 and downregulating p27, an inhibitor for cyclin-dependent kinases (CDKs). PI-3 kinase appears to be involved in the regulation of both cyclin D1 and p27. In this report, using two distinct inhibitors specific for PAK1-3 (CEP-1347 and WR-PAK18), we present the first evidence indicating that the PIX/Rac/CDC42-dependent Ser/Thr kinases PAK1-3, acting downstream of PI-3 kinase and upstream of the Raf/MEK/ERKs kinase cascade, is essential for RAS-induced upregulation of cyclin D1, but not downregulation of p27. Since these PAK-inhibitors block selectively the malignant growth of RAS transformants, in which PAK1 is constitutively activated, but not normal cell growth, it is suggested that RAS transformants are addicted to the high levels of PAK1 for their malignant entry to S phase.  相似文献   
77.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   
78.
Structural modification of imiquimod (1), which is known as an interferon-alpha (IFN-alpha) inducer, for the aim of finding a novel and small-molecule tumor necrosis factor-alpha (TNF-alpha) suppressor and structure-activity relationship (SAR) are described. Structural modification of a imiquimod analogue, 4-amino-1-[2-(1-benzyl-4-piperidyl)ethyl-1H-imidazo[4,5-c]quinoline (2), which had moderate TNF-alpha suppressing activity without IFN-alpha inducing activity, led to a finding of 4-chloro-2-phenyl-1-[2-(4-piperidyl)ethyl]-1H-imidazo[4,5-c]quinoline (10) with potent TNF-alpha suppressing activity. The relation between conformational direction of 2-(4-piperidyl)ethyl group at position 1 and TNF-alpha suppressing activity is also demonstrated by NMR.  相似文献   
79.
Very little is known about the contribution of a low affinity neurotrophin receptor, p75, to neurotransmitter release. Here we show that nerve growth factor (NGF) induced a rapid release of glutamate and an increase of Ca2+ in cerebellar neurons through a p75-dependent pathway. The NGF-induced release occurred even in the presence of the Trk inhibitor K252a. The release caused by NGF but not brain-derived neurotrophic factor was enhanced in neurons overexpressing p75. Further, after transfection of p75-small interfering RNA, which down-regulated the endogenous p75 expression, the NGF-induced release was inhibited, suggesting that the NGF-induced glutamate release was through p75. We found that the NGF-increased Ca2+ was derived from the ryanodine-sensitive Ca2+ receptor and that the NGF-increased Ca2+ was essential for the NGF-induced glutamate release. Furthermore, scyphostatin, a sphingomyelinase inhibitor, blocked the NGF-dependent Ca2+ increase and glutamate release, suggesting that a ceramide produced by sphingomyelinase was required for the NGF-stimulated Ca2+ increase and glutamate release. This action of NGF only occurred in developing neurons whereas the brain-derived neurotrophic factor-mediated Ca2+ increase and glutamate release was observed at the mature neuronal stage. Thus, we demonstrate that NGF-mediated neurotransmitter release via the p75-dependent pathway has an important role in developing neurons.  相似文献   
80.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号