首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   128篇
  2022年   9篇
  2021年   26篇
  2020年   7篇
  2019年   12篇
  2018年   22篇
  2017年   16篇
  2016年   25篇
  2015年   41篇
  2014年   49篇
  2013年   75篇
  2012年   94篇
  2011年   94篇
  2010年   65篇
  2009年   49篇
  2008年   92篇
  2007年   103篇
  2006年   90篇
  2005年   90篇
  2004年   93篇
  2003年   83篇
  2002年   89篇
  2001年   25篇
  2000年   29篇
  1999年   16篇
  1998年   21篇
  1997年   15篇
  1996年   18篇
  1995年   10篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   19篇
  1990年   21篇
  1989年   17篇
  1988年   10篇
  1987年   16篇
  1986年   12篇
  1985年   12篇
  1984年   5篇
  1983年   13篇
  1982年   11篇
  1981年   14篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1975年   4篇
  1974年   5篇
  1971年   7篇
  1967年   4篇
  1966年   4篇
排序方式: 共有1620条查询结果,搜索用时 15 毫秒
111.
112.
Junctophilin (JP) subtypes, namely JP-1, 2, and 3, have been currently identified in excitable cells and constitute a novel family of junctional membrane complex proteins. Our studies have suggested that JPs take part in the formation of junctional membrane complexes by spanning the membrane of the intracellular Ca(2+) store and interacting with the cell-surface membrane. In this report we describe the primary structures, genomic organization, and tissue distribution of human JP subtypes. By cloning and analyzing human genomic DNA segments, the protein-coding sequence interrupted with four introns was defined in each JP gene. The deduced human JP subtypes shared characteristic structural features with their rabbit and mouse counterparts. Genomic mapping demonstrated that JP genes do not cluster on the human genome. RNA blot hybridization indicated that tissue-specific expression patterns of JP genes in human are essentially the same as those in mouse; skeletal muscle contained both JP-1 and JP-2 mRNAs, the heart predominantly expressed JP-2 mRNA, and the brain specifically contained JP-3 mRNA. In the light of this, we propose intramolecular domains of JP subtypes based on the structural and functional characteristics.  相似文献   
113.
A clear parallelism was demonstrated between the efficiency as substrate of the substituted oligopeptides corresponding to the carboxy-terminal (C-terminal) sequence of the precursor D1 protein (pD1) in the in vitro enzymatic assay and their competitive inhibitory capacity toward the proteolytic C-terminal processing of the full-length pD1 integrated in the intact photosystem II complex embedded in the thylakoid membrane of Scenedesmus obliquus LF-1 mutant, as shown e.g. by the influence of L343A, A345G and A345V substitutions and the effect of C-terminal fragments. This suggests that the basic mechanism for substrate recognition by the processing protease elucidated in the enzymatic analysis using synthetic oligopeptides is also effective in vivo, although it can sometimes be difficult to detect the consequence of amino acid substitution in the integrated systems.  相似文献   
114.
Summary We have established a multipotent clonal cell line, named MEB5, from embryonic mouse forebrains after the infection of a retrovirus carrying E7 oncogene of human papillomavirus type 16. MEB5 cells proliferated in serum-free, epidermal growth factor (EGF)-supplemented medium. They expressed markers for neural precursor cells (nestin, A2B5, and RC1) and did not express markers for neurons (class III β-tubulin), astrocytes (glial fibrillary acidic protein), and oligodendrocytes (galactocerebroside). MEB5 cells were stably maintained in an undifferentiated state with a diploid karyotype in the presence of EGF. When they were deprived of EGF, about 50% of the cells died due apoptosis within 24 h. The remaining cells differentiated into neurons, astrocytes, or oligodendrocytes within 2 wk. The newly developed cells with neuronal morphology were immunoreactive for γ-aminobutyric acid and exhibited neuronal electrophysiological properties. When MEB5 cells were treated with leukemia inhibitory for 7 d, they were induced to differentiate exclusively into astrocytes. These results inducate that MEB5 is a cell line with characteristics of EGF-dependent, multipotent neural precursor cells. This cell line should provide a good model system to study the mechanisms of survival, proliferation, and differentiation of the multipotent precursor cells in the central nervous system.  相似文献   
115.
116.

Background

Accumulating evidence indicates that cancer stem cells (CSCs) drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS) forming model, to generate a population in which glioma stem cells (GSCs) become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.

Methodology/Principal Findings

To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres). Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone). Log-log plots of distributions of clone sizes yielded a good fit (r>0.90) to a straight line (log(% total clones) = k*log(#cells/clone)) indicating that the system follows a power-law (y = xk) with a specific degree exponent (k = −1.42). Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = −1.01 to −1.17). Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM), suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.

Conclusions/Significance

Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous glioma stem cell populations. That the data always fit a power-law suggests that: (i) clone sizes follow continuous, non-random, and scale-free hierarchy; (ii) precise biologic rules that reflect self-organizing emergent behaviors govern the generation of neurospheres. That the power-law behavior and the original GS heterogeneity are maintained over multiple passages indicates that these rules are invariant. These self-organizing mechanisms very likely underlie tumor heterogeneity during tumor growth. Discovery of this power-law behavior provides a mechanism that could be targeted in the development of new, more effective, anti-cancer agents.  相似文献   
117.
118.
Protein synthesis inhibitors such as cycloheximide (CHX) are known to suppress protein degradation including autophagy. The fact that CHX inhibits autophagy has been generally interpreted to indicate that newly synthesized protein is indispensable for autophagy. However, CHX is also known to increase the intracellular level of amino acids and activate mTORC1 activity, a master negative regulator of autophagy. Accordingly, CHX can affect autophagic activity through inhibition of de novo protein synthesis and/or modulation of mTORC1 signaling. In this study, we investigated the effects of CHX on autophagy using specific autophagy markers. We found that CHX inhibited starvation-induced autophagy but not Torin1-induced autophagy. CHX also suppressed starvation-induced puncta formation of GFP-ULK1, an early-step marker of the autophagic process which is regulated by mTORC1. CHX activated mTORC1 even under autophagy-inducible starvation conditions. Finally, the inhibitory effect of CHX on starvation-induced autophagy was cancelled by the mTOR inhibitor Torin1. These results suggest that CHX inhibits starvation-induced autophagy through mTORC1 activation and also that autophagy does not require new protein synthesis at least in the acute phase of starvation.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号