首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1487篇
  免费   128篇
  2021年   26篇
  2020年   7篇
  2019年   12篇
  2018年   22篇
  2017年   16篇
  2016年   25篇
  2015年   41篇
  2014年   49篇
  2013年   75篇
  2012年   94篇
  2011年   94篇
  2010年   65篇
  2009年   49篇
  2008年   92篇
  2007年   103篇
  2006年   90篇
  2005年   90篇
  2004年   93篇
  2003年   83篇
  2002年   89篇
  2001年   25篇
  2000年   29篇
  1999年   16篇
  1998年   21篇
  1997年   15篇
  1996年   18篇
  1995年   10篇
  1994年   13篇
  1993年   16篇
  1992年   13篇
  1991年   19篇
  1990年   21篇
  1989年   17篇
  1988年   10篇
  1987年   16篇
  1986年   12篇
  1985年   12篇
  1984年   5篇
  1983年   13篇
  1982年   11篇
  1981年   14篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
  1974年   5篇
  1971年   7篇
  1967年   4篇
  1966年   4篇
排序方式: 共有1615条查询结果,搜索用时 296 毫秒
101.
In this study, we established a system of high concentration serum-dependent spontaneous apoptosis of guinea pig gastric pit cells in primary culture, which seems to mimic the spontaneous apoptosis of matured gastric pit cells at gastric surface in vivo. In addition to induction of the spontaneous apoptosis, cell growth was inhibited in the presence of 10% serum compared with 0.5% serum. Transforming growth factor-beta1 (TGF-beta1), which is known to cause both apoptosis and growth inhibition in mammalian cells, was present in serum of both fetal calf and guinea pig. The addition of recombinant TGF-beta1 to the culture medium containing 0.5% fetal calf serum caused both induction of apoptosis and inhibition of cell growth. On the other hand, immunodepletion of TGF-beta1 from fetal calf serum caused inability to induce both the spontaneous apoptosis and inhibition of cell growth. These data suggest that TGF-beta1 is involved in the spontaneous apoptosis of guinea pig gastric pit cells in primary culture.  相似文献   
102.
Role of the second immunoglobulin-like loop of nectin in cell-cell adhesion   总被引:1,自引:0,他引:1  
We investigated whether and how rat liver thioredoxin reductase spares alpha-tocopherol in biomembranes. Purified hydroperoxides of beta-linoleoyl-gamma-palmitoylphosphatidylcholine were decreased 35% by treatment with thioredoxin reductase and 54% by thioredoxin reductase plus E. coli thioredoxin. Thioredoxin reductase also halved the amount of hydroperoxides that had been formed during photoperoxidation of liposomes composed of beta-linoleoyl-gamma-palmitoylphosphatidylcholine, and of emulsions of both cholesterol and cholesteryl linolenate. In erythrocyte ghosts, thioredoxin reductase spared alpha-tocopherol from oxidation by both soybean lipoxygenase and ferricyanide. Thioredoxin reductase also decreased F(2)-isoprostanes in ghosts oxidized by ferricyanide, suggesting that its ability to spare alpha-tocopherol relates to reduction of lipid hydroperoxides.  相似文献   
103.
B cells in the germinal center are known to undergo apoptosis after B cell receptor (BCR) ligation, a process relevant to immunological tolerance. Human CD27 is a B cell co-stimulatory molecule. The aim of this study was to compare the effects of CD27 and CD40 signals on BCR-mediated apoptosis of B cells. BCR ligation activated mitochondrial apoptotic pathways including down-regulation of Bcl-X(L), dissipation of mitochondrial transmembrane potential, release of cytochrome c, and activation of caspase-9. Each of these effects was significantly inhibited by CD27 and CD40. Bik expression was weakly but significantly down-regulated by CD27 but up-regulated by CD40. BCR ligation resulted in p53 activation including its phosphorylation at Ser(15), nuclear translocation, and target gene p53AIP1 induction. CD27 and CD40 clearly suppressed these processes. Analyses that used dominant-negative p53 variants revealed a low but still substantial level of BCR-mediated apoptosis and intact mitochondria-mediated apoptotic pathway. These pathways were further inhibited by CD27 and CD40, although the cells showed no p53 phosphorylation or p53AIP1 expression. Our results suggested that, at the mitochondrial level, CD27 and CD40 co-stimulatory signals regulated the p53-amplified apoptotic pathway in B cells through the inhibition of p53-independent apoptotic pathway primarily induced by BCR ligation.  相似文献   
104.
Seagrasses are composed of four families belonging to angiosperms and they are thought to become adaptive to aquatic life independently. Zosteraceae is one such family and because of the relatively high species diversity around Japan and Korea coast areas, the family might have arisen therefrom. To elucidate the origin and evolution of Zosteraceae which consists of three genera, Phyllospadix, Zostera, and Heterozostera, 2.8 kb nucleotide sequences of rbcL and matK genes in the chloroplast genome were examined for various species, including cosmopolitan Z. marina and endemic Z. caulescens. The phylogenetic analysis reveals the following three features. First, based on the synonymous nucleotide substitution rate of the rice chloroplast genome, we estimated the divergence times between Zosteraceae and its closest relative, Potamogetonaceae, and between different genera, Zostera and Phyllospadix, as approximately 100 million years (myr) and 36 myr, respectively, suggesting that Zosteraceae emerged somewhere in the period from 36 myr ago to 100 myr ago. Second, two subgenera of Zostera, Zostera and Zosterella, exhibit their reciprocal monophyly and appear to have differentiated from each other approximately 33 myr ago. However, the third genus Heterozostera branched off only 5 myr ago from the stem lineage leading to Zosterella and this seems too recent in comparison with the ancient divergence of the two subgenera. Third, we estimated the most recent common ancestor of subgenus Zostera as 6 myr. In Z. marina four haplotypes were found in the sample and have diversified in the past 1.5 myr. One haplotype is shared by both sides of the Japan Archipelago and its closely related haplotypes occur also in eastern Pacific Ocean. Based on these phylogeographic analyses, we propose a provisional age related classification of Zosteraceae to argue the origin and evolution.  相似文献   
105.
It is known that pharmacological or toxic doses of vitamin D induce bone resorption both in vivo and in vitro, whereas physiological doses of the vitamin have a protective effect on bone in vivo. To investigate the discrepancies of the dose-dependent effect of vitamin D on bone resorption, we examined the in vivo effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] on the expression of the receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL) and osteoprotegerin (OPG) mRNAs in bone of thyroparathyroidectomized (TPTX) rats infused with or without parathyroid hormone (PTH). Continuous infusion of 50 ng/h of PTH greatly increased the expression of RANKL mRNA in bone of TPTX rats. Expression of OPG mRNA was not altered by PTH infusion. When graded doses of 1,25(OH)(2)D(3) was daily administered orally for 14 days to normocalcemic TPTX rats constantly infused with PTH, 0.01 and 0.1 microg/kg of 1,25(OH)(2)D(3) inhibited the PTH-induced RANKL mRNA expression, but 0.5 microg/kg of the vitamin did not inhibit it. Regulator of G protein signaling-2 (RGS-2) gene expression was suppressed by 1,25(OH)(2)D(3) dose-dependently, but PTH/PTHrP receptor mRNA expression was not altered. Bone morphometric analyses revealed that 1,25(OH)(2)D(3) suppressed PTH-induced osteoclast number in vivo. These results suggest that pharmacological or toxic doses of 1,25(OH)(2)D(3) stimulate bone resorption by inducing RANKL, but a certain range of physiological doses of the vitamin inhibit PTH-induced bone resorption, the latter mechanism appeared to be mediated, at least in part, by the suppression of the PTH/PTHrP receptor-mediated signaling.  相似文献   
106.
Changes in synaptic efficacy are considered necessary for learning and memory. Recently, it has been suggested that estrogen controls synaptic function in the central nervous system. However, it is unclear how estrogen regulates synaptic function in central nervous system neurons. We found that estrogen potentiated presynaptic function in cultured hippocampal neurons. Chronic treatment with estradiol (1 or 10 nm) for 24 h significantly increased a high potassium-induced glutamate release. The estrogen-potentiated glutamate release required the activation of both phosphatidylinositol 3-kinase and MAPK.The high potassium-evoked release with or without estradiol pretreatment was blocked by tetanus neurotoxin, which is an inhibitor of exocytosis. In addition, the reduction in intensity of FM1-43 fluorescence, which labeled presynaptic vesicles, was enhanced by estradiol, suggesting that estradiol potentiated the exocytotic mechanism. Furthermore, protein levels of synaptophysin, syntaxin, and synaptotagmin (synaptic proteins, respectively) were up-regulated by estradiol. We confirmed that the up-regulation of synaptophysin was blocked by the MAPK pathway inhibitor, U0126. These results suggested that estrogen enhanced presynaptic function through the up-regulated exocytotic system. In this study, we propose that estrogen reinforced excitatory synaptic transmission via potentiated-glutamate release from presynaptic sites.  相似文献   
107.
108.
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes the light-dependent reduction of protochlorophyllide. To elucidate the physiological function of three differentially regulated POR isoforms (PORA, PORB and PORC) in Arabidopsis thaliana, we isolated T-DNA tagged null mutants of porB and porC. The mature seedlings of the mutants had normal photosynthetic competencies, showing that PORB and PORC are interchangeable and functionally redundant in developed plants. In etiolated seedlings, only porB showed a reduction in the photoactive protochlorophyllide and the size of prolamellar bodies (PLBs), indicating that PORB, as well as PORA, functioned in PLB assembly and photoactive protochlorophyllide formation in etiolated seedlings. When illuminated, the etiolated porB seedling was able to green to a similar extent as the wild type, whereas the greening was significantly reduced under low light conditions. During greening, high light irradiation increased the level of PORC protein, and the greening of porC was repressed under high light conditions. The porB, but not porC, etiolated seedling was more sensitive to the far-red block of greening than the wild type, which is caused by depletion of endogenous POR proteins resulting in photo-oxidative damage. These results suggest that, at the onset of greening, PLBs are important for efficient capture of light energy for photoconversion under various light conditions, and PORC, which is induced by high light irradiation, contributes to photoprotection during greening of the etiolated seedlings.  相似文献   
109.
Molecular approaches have shown that a group of bacteria (called cluster 1 bacteria) affiliated with the epsilon subclass of the class Proteobacteria constituted major populations in underground crude-oil storage cavities. In order to unveil their physiology and ecological niche, this study isolated bacterial strains (exemplified by strain YK-1) affiliated with the cluster 1 bacteria from an oil storage cavity at Kuji in Iwate, Japan. 16S rRNA gene sequence analysis indicated that its closest relative was Thiomicrospira denitrificans (90% identity). Growth experiments under anaerobic conditions showed that strain YK-1 was a sulfur-oxidizing obligate chemolithotroph utilizing sulfide, elemental sulfur, thiosulfate, and hydrogen as electron donors and nitrate as an electron acceptor. Oxygen also supported its growth only under microaerobic conditions. Strain YK-1 could not grow on nitrite, and nitrite was the final product of nitrate reduction. Neither sugars, organic acids (including acetate), nor hydrocarbons could serve as carbon and energy sources. A typical stoichiometry of its energy metabolism followed an equation: S(2-) + 4NO(3)(-) --> SO(4)(2-) + 4NO(2)(-) (Delta G(0) = -534 kJ mol(-1)). In a difference from other anaerobic sulfur-oxidizing bacteria, this bacterium was sensitive to NaCl; growth in medium containing more than 1% NaCl was negligible. When YK-1 was grown anaerobically in a sulfur-depleted inorganic medium overlaid with crude oil, sulfate was produced, corresponding to its growth. On the contrary, YK-1 could not utilize crude oil as a carbon source. These results suggest that the cluster 1 bacteria yielded energy for growth in oil storage cavities by oxidizing petroleum sulfur compounds. Based on its physiology, ecological interactions with other members of the groundwater community are discussed.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号