首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1401篇
  免费   87篇
  2022年   8篇
  2021年   22篇
  2020年   7篇
  2019年   12篇
  2018年   20篇
  2017年   17篇
  2016年   31篇
  2015年   42篇
  2014年   49篇
  2013年   77篇
  2012年   104篇
  2011年   92篇
  2010年   64篇
  2009年   56篇
  2008年   82篇
  2007年   97篇
  2006年   102篇
  2005年   90篇
  2004年   80篇
  2003年   79篇
  2002年   87篇
  2001年   19篇
  2000年   15篇
  1999年   16篇
  1998年   19篇
  1997年   10篇
  1996年   15篇
  1995年   15篇
  1994年   9篇
  1993年   11篇
  1992年   15篇
  1991年   15篇
  1990年   9篇
  1989年   19篇
  1988年   12篇
  1987年   11篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1982年   7篇
  1981年   13篇
  1980年   3篇
  1973年   3篇
  1971年   2篇
  1969年   1篇
  1966年   1篇
  1965年   2篇
  1964年   1篇
  1963年   1篇
排序方式: 共有1488条查询结果,搜索用时 31 毫秒
171.
172.
N-Glycan structures on the surface of cancer cells have diverse structures and play significant roles in metastatic process. However, little is known about their roles in organ-selective metastasis. Our study revealed that an alpha1,6-fucosylated biantennary N-glycan structure designated A2G2F is characteristic of lungs, with far more abundant expression in normal human and murine lungs than in other organs. In this study, we further examined the role of A2G2F in pulmonary metastasis. We stained metastatic cancers by alpha1,6-fucose-specific Lens culinaris agglutinin lectin and revealed that pulmonary metastatic nodules more abundantly expressed alpha1,6-fucosylated N-glycans than hepatic metastatic nodules from common primary cancers. The most specific alpha1,6-fucosylated N-glycan structure in pulmonary metastatic cancer was identified to be A2G2F. Using a B16 melanoma cell metastasis model, we showed that A2G2F-rich B16 cells formed more pulmonary metastatic nodules than A2G2F-poor cells. Our results suggest that A2G2F plays a critical role in pulmonary metastasis.  相似文献   
173.
Little is known about the architecture and biochemical composition of the eukaryotic DNA replication fork. To study this problem, we used biotin-streptavidin-modified plasmids to induce sequence-specific replication fork pausing in Xenopus egg extracts. Chromatin immunoprecipitation was employed to identify factors associated with the paused fork. This approach identifies DNA pol alpha, DNA pol delta, DNA pol varepsilon, MCM2-7, Cdc45, GINS, and Mcm10 as components of the vertebrate replisome. In the presence of the DNA polymerase inhibitor aphidicolin, which causes uncoupling of a highly processive DNA helicase from the stalled replisome, only Cdc45, GINS, and MCM2-7 are enriched at the pause site. The data suggest the existence of a large molecular machine, the "unwindosome," which separates DNA strands at the replication fork and contains Cdc45, GINS, and the MCM2-7 holocomplex.  相似文献   
174.

Background  

Exposure to dioxins results in a broad range of pathophysiological disorders in human fetuses. In order to evaluate the effects of dioxins on the feto-placental tissues, we analyzed the gene expression in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treated primary cultures of human amniotic epithelial cells.  相似文献   
175.
Protein kinases are involved in a variety of cellular functions and cell proliferation in eyes. We have explored the involvement of protein kinase C (PKC) in cell proliferation and melanin synthesis by chick retinal pigment epithelial (RPE) cells in vitro. This was achieved by incubation of confluent RPE cells with known inhibitors of protein kinase, H-7, W-7, H-8, and staurosporine. Chick RPE cells were cultured in the presence or absence of the protein kinase inhibitors for a 10-day period. Effects of the inhibitors on cell proliferation and melanin synthesis, as an indication of cell differentiation, were assessed by counting the number of surviving cells and by measuring the melanin content in the cells, respectively. H-7, W-7, and staurosporine inhibited cell proliferation and increased melanin synthesis in a concentration-dependent manner during culture; however, H-8 did not produce these cellular effects. These findings indicate that PKC and calcium/calmodulin-dependent kinase pathways are involved in the proliferation and differentiation of chick RPE cells.  相似文献   
176.
The production of allergen-specific IgE antibodies (Abs) in allergen-sensitized patients or animals has a mutual relationship with the immunologic response leading to allergic rhinitis. We recently reported that, after an intranasal injection of cedar pollen into mice, an interleukin-4 (IL-4)-dependent increase in serum nonspecific IgE Abs was a prerequisite for the production of serum allergen-specific IgE Abs. Here, we explored which lymphoid organs were responsive to the intranasally injected allergen and how IL-4 and IgE Abs were produced in the lymphocytes. Time-dependent changes in the total cell numbers and in in vitro IgE Ab production in various lymphoid organs revealed that the submandibular lymph nodes were the main responsible organ. After treatment with allergen (for IgE production) or allergen and complete Freund's adjuvant (for IgG production), we separated submandibular lymph node cells into macrophage-, lymphocyte-, and granulocyte-rich populations by discontinuous Percoll density-gradient centrifugation. Unexpectedly, bulk cells, but not the lymphocyte- or macrophage-rich populations, produced significant amounts of IL-4, IgE, and IgG; whereas production was restored by addition of Mac-1(+) cells from the macrophage-rich to the lymphocyte-rich fraction. Furthermore, a combination of the lymphocyte-rich population (for IgG [or IgE]) production) and the macrophage-rich population (for IgE [or IgG]) production) produced a large amount of IgE (or IgG). These results indicate that, in the initiation of allergic rhinitis, macrophages in the submandibular lymph nodes are essential not only for IL-4 or immunoglobulin production, but also for class switching of immunoglobulin in lymphocytes.  相似文献   
177.
178.
Genetic engineering of tumor cells to express immune-stimulatory molecules, including cytokines and co-stimulatory ligands, is a promising approach to generate highly efficient cancer vaccines. The co-signaling molecule, LIGHT, is particularly well suited for use in vaccine development as it delivers a potent co-stimulatory signal through the Herpes virus entry mediator (HVEM) receptor on T cells and facilitates tumor-specific T cell immunity. However, because LIGHT binds two additional receptors, lymphotoxin β receptor and Decoy receptor 3, there are significant concerns that tumor-associated LIGHT results in both unexpected adverse events and interference with the ability of the vaccine to enhance antitumor immunity. In order to overcome these problems, we generated tumor cells expressing the single-chain variable fragment (scFv) of anti-HVEM agonistic mAb on the cell surface. Tumor cells expressing anti-HVEM scFv induce a potent proliferation and cytokine production of co-cultured T cells. Inoculation of anti-HVEM scFv-expressing tumor results in a spontaneous tumor regression in CD4+ and CD8+ T cell-dependent fashion, associated with the induction of tumor-specific long-term memory. Stimulation of HVEM and 4-1BB co-stimulatory signals by anti-HVEM scFv-expressing tumor vaccine combined with anti-4-1BB mAb shows synergistic effects which achieve regression of pre-established tumor and T cell memory specific to parental tumor. Taken in concert, our data suggest that genetic engineering of tumor cells to selectively potentiate the HVEM signaling pathway is a promising antitumor vaccine therapy.  相似文献   
179.
Protein delivery to primary cells by protein transduction domain (PTD) serves as a novel measure for manipulation of the cells for biological study and for the treatment of various human conditions. Although the method has been employed to modulate cellular function in vitro, only limited reports are available on its application in the replacement of deficient signaling molecules into primary cells. We examined the potential of recombinant proteins to compensate for defective cytosolic components of the NADPH oxidase complex in chronic granulomatous disease (CGD) neutrophils in both p47(phox) and p67(phox) deficiency. The p47(phox) or p67(phox) protein linked to Hph-1 PTD was effectively expressed in soluble form and transduced into human neutrophils efficiently without eliciting unwanted signal transduction or apoptosis. The delivered protein was stable for more than 24h, expressed in the cytoplasm, translocated to the membrane fraction upon activation, and, most importantly able to restored reactive oxygen species (ROS) production. Although research on human primary neutrophils using the protein delivery system is still limited, our data show that the protein transduction approach for neutrophils may be applicable to the control of local infections in CGD patients by direct delivery of the protein product.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号