首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1253篇
  免费   79篇
  2022年   7篇
  2021年   23篇
  2020年   7篇
  2019年   10篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   33篇
  2014年   38篇
  2013年   59篇
  2012年   88篇
  2011年   82篇
  2010年   57篇
  2009年   49篇
  2008年   83篇
  2007年   78篇
  2006年   94篇
  2005年   88篇
  2004年   79篇
  2003年   77篇
  2002年   77篇
  2001年   14篇
  2000年   20篇
  1999年   18篇
  1998年   21篇
  1997年   11篇
  1996年   13篇
  1995年   13篇
  1994年   7篇
  1993年   14篇
  1992年   6篇
  1991年   9篇
  1990年   11篇
  1989年   11篇
  1988年   5篇
  1987年   9篇
  1986年   12篇
  1985年   10篇
  1983年   4篇
  1982年   6篇
  1981年   10篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1972年   1篇
  1971年   3篇
  1969年   1篇
排序方式: 共有1332条查询结果,搜索用时 383 毫秒
111.
Type A neurotoxin of Clostridium botulinum was purified by a simple procedure using a lactose gel column. This procedure was previously reported for type B neurotoxin. Hemagglutinin-positive toxins (19S and 16S) were bound to the column under acid conditions, and the neurotoxin alone was dissociated from these hemagglutinin-positive toxins by changing the pH of the column to an alkaline condition. The toxicity of this purified toxin preparation was retained for at least 1 year at -30 degrees C by supplementing it with either 0.1% albumin or 0.05% albumin plus 1% trehalose. This preparation was used to treat 18 patients with urinary incontinence caused by refractory idiopathic and neurogenic detrusor overactivity; 16 of the patients showed excellent improvement. Improvements started within 1 week after injection in most cases and lasted 3-12 months [corrected]  相似文献   
112.
STM (RaSTM) and YAB2 (RaYAB2) homologues were isolated from Ruscus aculeatus (Asparagaceae, monocots), and their expressions were analyzed by real-time polymerase chain reaction (PCR) to assess hypotheses on the evolutionary origin of the phylloclade in the Asparagaceae. In young shoot buds, RaSTM is expressed in the shoot apex, while RaYAB2 is expressed in the scale leaf subtending the shoot bud. This expression pattern is shared by other angiosperms, suggesting that the expression patterns of RaSTM and RaYAB2 are useful as molecular markers to identify the shoot and leaf, respectively. RaSTM and RaYAB2 are expressed concomitantly in phylloclade primordia. These results suggest that the phylloclade is not homologous to either the shoot or leaf, but that it has a double organ identity.  相似文献   
113.
114.
In the past decades, the function of the Wnt canonical pathway during embryogenesis has been intensively investigated; however, little survey of neonatal and adult tissues has been made, and the role of this pathway remains largely unknown. To investigate its role in mature tissues, we generated two new reporter transgenic mouse lines, ins-TOPEGFP and ins-TOPGAL, that drive EGFP and beta-galactosidase expression under TCF/beta-catenin, respectively. To obtain the accurate expression pattern, we flanked these transgenes with the HS4 insulator to reduce chromosomal positional effects. Analysis of embryos showed that the reporter genes were activated in regions where canonical Wnt activity has been implicated. Furthermore, their expression patterns were consistent in both lines, indicating the accuracy of the reporter signal. In the neonatal brain, the reporter signal was detected in the mesencephalon and hippocampus. In the adult mice, the reporter signal was found in the mature pericenteral hepatocytes in the normal liver. Furthermore, during inflammation the number of T cells expressing the reporter gene increased in the adult spleen. Thus, in this research, we identified two organs, i.e., the liver and spleen, as novel organs in which the Wnt canonical signal is in motion in the adult. These transgenic lines will provide us broader opportunities to investigate the function of the Wnt canonical pathway in vivo.  相似文献   
115.
Auxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin‐deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole‐3‐pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L. for indole‐3‐acetic acid (IAA), the most common member of the auxin family. In this pathway, YUCCA, a flavin‐containing monooxygenase (YUC), catalyzes the last step of conversion from IPyA to IAA. In this study, we screened effective inhibitors, 4‐biphenylboronic acid (BBo) and 4‐phenoxyphenylboronic acid (PPBo), which target YUC. These compounds inhibited the activity of recombinant YUC in vitro, reduced endogenous IAA content, and inhibited primary root elongation and lateral root formation in wild‐type Arabidopsis seedlings. Co‐treatment with IAA reduced the inhibitory effects. Kinetic studies of BBo and PPBo showed that they are competitive inhibitors of the substrate IPyA. Inhibition constants (Ki) of BBo and PPBo were 67 and 56 nm , respectively. In addition, PPBo did not interfere with the auxin response of auxin‐marker genes when it was co‐treated with IAA, suggesting that PPBo is not an inhibitor of auxin sensing or signaling. We propose that these compounds are a class of auxin biosynthesis inhibitors that target YUC. These small molecules are powerful tools for the chemical genetic analysis of auxin function.  相似文献   
116.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   
117.
118.
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7(+) MyoD(-) undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号