首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1268篇
  免费   78篇
  国内免费   1篇
  2023年   3篇
  2022年   5篇
  2021年   18篇
  2020年   13篇
  2019年   18篇
  2018年   12篇
  2017年   20篇
  2016年   35篇
  2015年   44篇
  2014年   48篇
  2013年   65篇
  2012年   92篇
  2011年   71篇
  2010年   45篇
  2009年   48篇
  2008年   103篇
  2007年   95篇
  2006年   90篇
  2005年   77篇
  2004年   75篇
  2003年   74篇
  2002年   62篇
  2001年   33篇
  2000年   33篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   7篇
  1995年   6篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1988年   3篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   2篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   2篇
  1966年   2篇
排序方式: 共有1347条查询结果,搜索用时 31 毫秒
151.
Fucoidan induces apoptosis by activating caspase-8 in human MCF-7 breast cancer cells, but the detailed mechanism for this is not understood. We demonstrate here that fucoidan interacted with the cell surface, and silencing the β1-integrin gene expression inhibited fucoidan-induced apoptosis accompanied by caspase-8 activation. Fucoidan induced formation of the β1-integrin-caspase-8 complex. These data indicate that β1-integrin is an important factor for the cell-surface binding of fucoidan and plays an important role in fucoidan-induced apoptosis. Fucoidan also induced recruitment of caspase-8 to the β1-integrin intracellular domain, cleaved it into the activated protein by direct combination with β1-integrin, and induced apoptosis via the caspase cascade in MCF-7 cells.  相似文献   
152.
While abnormalities in monoamine metabolism have been investigated heavily per potential roles in the mechanisms of depression, the contribution of amino acid metabolism in the brain remains not well understood. In additional, roles of the hypothalamus–pituitary–adrenal axis in stress-regulation mechanisms have been of much focus, while the contribution of central amino acid metabolism to these mechanisms has not been well appreciated. Therefore, whether depression-like states affect amino acid metabolism and their potential roles on stress-regulatory mechanisms were investigated by comparing Wistar Kyoto rats, which display depression-like behaviors and stress vulnerability, to control Wistar rats. Brain amino acid metabolism in Wistar Kyoto rats was greatly different from normal Wistar rats, with special reference to lower cystathionine and serine levels. In addition, Wistar Kyoto rats demonstrated abnormality in dopamine metabolism compared with Wistar rats. In the case of stress response, amino acid levels having a sedative and/or hypnotic effect were constant in the brain of Wistar Kyoto rats, though these amino acid levels were reduced in Wistar rats under a stressful condition. These results suggest that the abnormal amino acid metabolism may induce depression-like behaviors and stress vulnerability in Wistar Kyoto rats. Therefore, we hypothesized that abnormalities in amino acid and monoamine metabolism may induce depression, and amino acid metabolism in the brain may be related to stress vulnerability.  相似文献   
153.
154.
155.
5-Alkenyl or 5-alkynyl-4-anilinopyrimidines were prepared and evaluated for in vitro inhibition of EGFR/Her-2 kinase activity and the growth of tumor cell lines (BT474 and N87). Several of these compounds inhibited the growth of BT474 and N87 at concentrations below 200nM. Structure-activity relationship studies revealed a critical role for the 5-alkynyl moieties. The representative compound 19 exhibited significant antitumor potency in a mouse xenograft model.  相似文献   
156.
AimsExposure to glucose and its metabolites in peritoneal dialysis fluid (PDF) results in structural alterations of the peritoneal membrane. Icodextrin-containing PDF eliminates glucose and reduces deterioration of peritoneal membrane function, but direct effects of icodextrin molecules on peritoneal mesothelial cells have yet to be elucidated. We compared the impacts of icodextrin itself with those of glucose under PDF-free conditions on wound healing processes of injured mesothelial cell monolayers, focusing on integrin-mediated cell adhesion mechanisms.Main methodsRegeneration processes of the peritoneal mesothelial cell monolayer were investigated employing an in vitro wound healing assay of cultured rat peritoneal mesothelial cells treated with icodextrin powder- or glucose-dissolved culture medium without PDF, as well as icodextrin- or glucose-containing PDF. The effects of icodextrin on integrin-mediated cell adhesions were examined by immunocytochemistry and Western blotting against focal adhesion kinase (FAK).Key findingsCell migration over fibronectin was inhibited in conventional glucose-containing PDF, while icodextrin-containing PDF exerted no significant inhibitory effects. Culture medium containing 1.5% glucose without PDF also inhibited wound healing of mesothelial cells, while 7.5% icodextrin-dissolved culture medium without PDF had no inhibitory effects. Glucose suppressed cell motility by inhibiting tyrosine phosphorylation of FAK, formation of focal adhesions, and cell spreading, while icodextrin had no effects on any of these mesothelial cell functions.SignificanceOur results demonstrate icodextrin to have no adverse effects on wound healing processes of peritoneal mesothelial cells. Preservation of integrin-mediated cell adhesion might be one of the molecular mechanisms accounting for the superior biocompatibility of icodextrin-containing PDF.  相似文献   
157.
ABSTRACT: BACKGROUND: Recent successes in the determination of G-protein coupled receptor (GPCR) structures have relied on the ability of receptor variants to overcome difficulties in expression and purification. Therefore, the quick screening of functionally expressed stable receptor variants is vital. RESULTS: We developed a platform using Saccharomyces cerevisiae for the rapid construction and evaluation of functional GPCR variants for structural studies. This platform enables us to perform a screening cycle from construction to evaluation of variants within 6-7 days. We firstly confirmed the functional expression of 25 full-length class A GPCRs in this platform. Then, in order to improve the expression level and stability, we generated and evaluated the variants of the four GPCRs (hADRB2, hCHRM2, hHRH1 and hNTSR1). These stabilized receptor variants improved both functional activity and monodispersity. Finally, the expression level of the stabilized hHRH1 in Pichia pastoris was improved up to 65 pmol/mg from negligible expression of the functional full-length receptor in S. cerevisiae at first screening. The stabilized hHRH1 was able to be purified for use in crystallization trials. CONCLUSIONS: We demonstrated that the S. cerevisiae system should serve as an easy-to-handle and rapid platform for the construction and evaluation of GPCR variants. This platform can be a powerful prescreening method to identify a suitable GPCR variant for crystallography.  相似文献   
158.
Cell cycle-dependent expression of canonical histone proteins enables newly synthesized DNA to be integrated into chromatin in replicating cells. However, the molecular basis of cell cycle-dependency in the switching of histone gene regulation remains to be uncovered. Here, we report the identification and biochemical characterization of a molecular switcher, HERS (histone gene-specific epigenetic repressor in late S phase), for nucleosomal core histone gene inactivation in Drosophila. HERS protein is phosphorylated by a cyclin-dependent kinase (Cdk) at the end of S-phase. Phosphorylated HERS binds to histone gene regulatory regions and anchors HP1 and Su(var)3-9 to induce chromatin inactivation through histone H3 lysine 9 methylation. These findings illustrate a salient molecular switch linking epigenetic gene silencing to cell cycle-dependent histone production.  相似文献   
159.
The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein’s sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set (n = 512) of insertions and deletions (indels) and single nucleotide polymorphisms causing premature termination of translation in disease-related genes. Prediction of protein-destabilization effects was performed by graphical presentation of the locations of polymorphisms in the protein structure, using the Genomes TO Protein (GTOP) database, and manual annotation with a set of specific criteria. Protein-destabilization was predicted for 44.4% of the nonsense SNPs, 32.4% of the frameshifting indels, and 9.1% of the non-frameshifting indels. A prediction of nonsense-mediated decay allowed to infer which truncated proteins would actually be translated as defective proteins. These cases included the proteins linked to diseases inherited dominantly, suggesting a relation between these diseases and toxic aggregation. Our approach would be useful in identifying potentially aggregation-inducing polymorphisms that may have pathological effects.  相似文献   
160.
Bone marrow (BM)-derived stem/progenitor cells play an important role in ischemia-induced angiogenesis in cardiovascular diseases. Heat shock factor 1 (HSF1) is known to be induced in response to hypoxia and ischemia. We examined whether HSF1 contributes to ischemia-induced angiogenesis through the mobilization and recruitment of BM-derived stem/progenitor cells using HSF1-knockout (KO) mice. After the induction of ischemia, blood flow and microvessel density in the ischemic hindlimb were significantly lower in the HSF1-KO mice than in the wild-type (WT) mice. The mobilization of BM-derived Sca-1- and c-kit-positive cells in peripheral blood after ischemia was significantly lower in the HSF1-KO mice than in the WT mice. BM stem/progenitor cells from HSF1-KO mice showed a significant decrease in their recruitment to ischemic tissue and in migration, adhesion, and survival when compared with WT mice. Blood flow recovery in the ischemic hindlimb significantly decreased in WT mice receiving BM reconstitution with donor cells from HSF1-KO mice. Conversely, blood flow recovery in the ischemic hindlimb significantly increased in HSF1-KO mice receiving BM reconstitution with donor cells from WT mice. These findings suggest that HSF1 contributes to ischemia-induced angiogenesis by regulating the mobilization and recruitment of BM-derived stem/progenitor cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号