首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3619篇
  免费   216篇
  3835篇
  2022年   13篇
  2021年   37篇
  2020年   25篇
  2019年   28篇
  2018年   37篇
  2017年   52篇
  2016年   74篇
  2015年   103篇
  2014年   98篇
  2013年   186篇
  2012年   197篇
  2011年   201篇
  2010年   113篇
  2009年   110篇
  2008年   221篇
  2007年   209篇
  2006年   197篇
  2005年   203篇
  2004年   162篇
  2003年   161篇
  2002年   170篇
  2001年   124篇
  2000年   122篇
  1999年   101篇
  1998年   53篇
  1997年   57篇
  1996年   28篇
  1995年   18篇
  1994年   35篇
  1993年   26篇
  1992年   63篇
  1991年   58篇
  1990年   52篇
  1989年   52篇
  1988年   76篇
  1987年   44篇
  1986年   33篇
  1985年   26篇
  1984年   32篇
  1983年   22篇
  1982年   21篇
  1981年   10篇
  1980年   14篇
  1979年   22篇
  1978年   23篇
  1975年   16篇
  1974年   13篇
  1973年   19篇
  1971年   12篇
  1968年   9篇
排序方式: 共有3835条查询结果,搜索用时 15 毫秒
991.
To explore reasons for a high accumulation of Ca and P occurring in the coronary artery of Thai with aging, the authors investigated age-related changes of elements in the coronary artery, ascending aorta near the heart, and cardiac valves in single individuals, and the relationships in the elements between the coronary artery and either the ascending aorta or cardiac valves. After an ordinary dissection by medical students at Chiang Mai University was finished, the anterior descending arteries of the left coronary artery, ascending aortas, mitral valves, and aortic valves were resected from the subjects. The subjects consisted of 17 men and 9 women, ranging in age from 46 to 76 yr. The element content was analyzed by inductively coupled plasma-atomic emission spectrometry. The average content of Ca and P was the highest in the coronary artery and decreased in the order aortic valve, ascending aorta, and mitral valve. The Ca, P, and Mg content increased in the coronary artery in the fifties and in the ascending aorta, aortic valve, and mitral valve in the sixties. It should be noted that the accumulation of Ca, P, and Mg occurred earlier in the coronary artery than in the ascending aorta, aortic valve, and mitral valve. It was found that with respect to the Ca, P, Mg, and Na contents, the coronary artery correlated well with both the aortic valve and ascending aorta, especially with the aortic valve, but it did not correlate with the mitral valves. This finding suggests that the accumulation of Ca, P, Mg, and Na occurs in the coronary artery together with the aortic valve and ascending aorta, but not together with the mitral valve. Because regarding the accumulation of Ca, P, and Mg, the ascending aorta and aortic valve are preceded by the coronary artery, it is unlikely that the accumulation of Ca, P, and Mg spreads from the ascending aorta or aortic valve to the coronary artery.  相似文献   
992.
Although bovine beta-lactoglobulin assumes a monomeric native structure at pH 3 in the absence of salt, the addition of salts stabilizes the dimer. Thermodynamics of the monomer-dimer equilibrium dependent on the salt concentration were studied by sedimentation equilibrium. The addition of NaCl, KCl, or guanidine hydrochloride below 1 M stabilized the dimer in a similar manner. On the other hand, NaClO(4) was more effective than other salts by about 20-fold, suggesting that anion binding is responsible for the salt-induced dimer formation, as observed for acid-unfolded proteins. The addition of guanidine hydrochloride at 5 M dissociated the dimer into monomers because of the denaturation of protein structure. In the presence of either NaCl or NaClO(4), the dimerization constant decreased with an increase in temperature, indicating that the enthalpy change (DeltaH(D)) of dimer formation is negative. The heat effect of the dimer formation was directly measured with an isothermal titration calorimeter by titrating the monomeric beta-lactoglobulin at pH 3.0 with NaClO(4). The net heat effects after subtraction of the heat of salt dilution, corresponding to DeltaH(D), were negative, and were consistent with those obtained by the sedimentation equilibrium. From the dependence of dimerization constant on temperature measured by sedimentation equilibrium, we estimated the DeltaH(D) value at 20 degrees C and the heat capacity change (DeltaC(p)) of dimer formation. In both NaCl and NaClO(4), the obtained DeltaC(p) value was negative, indicating the dominant role of burial of the hydrophobic surfaces upon dimer formation. The observed DeltaC(p) values were consistent with the calculated value from the X-ray dimeric structure using a method of accessible surface area. These results indicated that monomer-dimer equilibrium of beta-lactoglobulin at pH 3 is determined by a subtle balance of hydrophobic and electrostatic effects, which are modulated by the addition of salts or by changes in temperature.  相似文献   
993.
 Certain haplotypes at the major histocompatibility (B) complex (Mhc) of the chicken provide an easily demonstrated influence on tumor formation following infections with Marek’s disease virus (MDV). Recognition that there is a second histocompatibility complex of genes in the chicken, Rfp-Y, comprised of Mhc class I and class II genes, some of which are at least transcribed, evokes the question of whether this gene complex might also influence the outcome of MDV infections. To test this hypothesis, pedigree-hatched chicks in families from the original Rfp-Y-defining stock in which three Rfp-Y and two B system haplotypes are segregating were challenged with the RB1B strain of MDV. Birds with the Y 3 /Y 3 genotype were found to have 2.3 times the risk of developing a tumor compared with birds with other Rfp-Y genotypes combined (P <0.02). Additionally, birds carrying the B R9 /B 11 genotype had 2.3 times the risk of tumor formation, relative to birds with the B 11 /B 11 genotype (P <0.02). We found no evidence for an interaction between genotypes within the B and Rfp-Y systems. These data provide evidence that Rfp-Y haplotypes, as well as B haplotypes, can significantly influence the outcome of infection with MDV. Received: 15 February 1996 / Revised: 23 April 1996  相似文献   
994.
Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine‐rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.  相似文献   
995.
Eukaryotic cells assemble actomyosin rings during cytokinesis to function as force-generating machines to drive membrane invagination and to counteract the intracellular pressure and the cell surface tension. How the extracellular matrix affects actomyosin ring contraction has not been fully explored. While studying the Schizosaccharomyces pombe 1,3-β-glucan-synthase mutant cps1-191, which is defective in division septum synthesis and arrests with a stable actomyosin ring, we found that weakening of the extracellular glycan matrix caused the generated spheroplasts to divide under the nonpermissive condition. This nonmedial slow division was dependent on a functional actomyosin ring and vesicular trafficking, but independent of normal septum synthesis. Interestingly, the high intracellular turgor pressure appears to play a minimal role in inhibiting ring contraction in the absence of cell wall remodeling in cps1-191 mutants, as decreasing the turgor pressure alone did not enable spheroplast division. We propose that during cytokinesis, the extracellular glycan matrix restricts actomyosin ring contraction and membrane ingression, and remodeling of the extracellular components through division septum synthesis relieves the inhibition and facilitates actomyosin ring contraction.  相似文献   
996.
Ribonuclease HI from the psychrotrophic bacterium Shewanella oneidensis MR-1 (So-RNase HI) is much less stable than Escherichia coli RNase HI (Ec-RNase HI) by 22.4 degrees C in T m and 12.5 kJ mol (-1) in Delta G(H 2O), despite their high degrees of structural and functional similarity. To examine whether the stability of So-RNase HI increases to a level similar to that of Ec-RNase HI via introduction of several mutations, the mutations that stabilize So-RNase HI were identified by the suppressor mutation method and combined. So-RNase HI and its variant with a C-terminal four-residue truncation (154-RNase HI) complemented the RNase H-dependent temperature-sensitive (ts) growth phenotype of E. coli strain MIC3001, while 153-RNase HI with a five-residue truncation could not. Analyses of the activity and stability of these truncated proteins suggest that 153-RNase HI is nonfunctional in vivo because of a great decrease in stability. Random mutagenesis of 153-RNase HI using error-prone PCR, followed by screening for the revertants, allowed us to identify six single suppressor mutations that make 153-RNase HI functional in vivo. Four of them markedly increased the stability of the wild-type protein by 3.6-6.7 degrees C in T m and 1.7-5.2 kJ mol (-1) in Delta G(H 2O). The effects of these mutations were nearly additive, and combination of these mutations increased protein stability by 18.7 degrees C in T m and 12.2 kJ mol (-1) in Delta G(H 2O). These results suggest that several residues are not optimal for the stability of So-RNase HI, and their replacement with other residues strikingly increases it to a level similar to that of the mesophilic counterpart.  相似文献   
997.
We previously revealed that epithelial‐to‐mesenchymal transition (EMT) was mediated by ΔNp63β, a splicing variant of ΔNp63, in oral squamous cell carcinoma (OSCC). Recent studies have highlighted the involvement of microRNA (miRNA) in EMT of cancer cells, though the mechanism remains unclear. To identify miRNAs responsible for ΔNp63β‐mediated EMT, miRNA microarray analyses were performed by ΔNp63β‐overexpression in OSCC cells; SQUU‐B, which lacks ΔNp63 expression and displays EMT phenotypes. miRNAs microarray analyses revealed miR‐205 was the most up‐regulated following ΔNp63β‐overexpression. In OSCC cells, miR‐205 expression was positively associated with ΔNp63 and negatively with zinc‐finger E‐box binding homeobox (ZEB) 1 and ZEB2, potential targets of miR‐205. miR‐205 overexpression by miR‐205 mimic transfection into SQUU‐B cells led to decreasing ZEB1, ZEB2, and mesenchymal markers, increasing epithelial markers, and reducing cell motilities, suggesting inhibition of EMT phenotype. Interestingly, the results opposite to this phenomenon were obtained by transfection of miR‐205 inhibitor into OSCC cells, which express ΔNp63 and miR‐205. Furthermore, target protector analyses revealed direct regulation by miR‐205 of ZEB1 and ZEB2 expression. These results showed tumor‐suppressive roles of ΔNp63β and miR‐205 by inhibiting EMT thorough modulating ZEB1 and ZEB2 expression in OSCC.  相似文献   
998.
999.
The site-specific recombinase Cre is valuable for regulation of gene expression not only in vitro but also in vivo. We previously reported that replication-deficient recombinant adenovirus (rAd) expressing Cre can mediate efficient and strict regulation in 100% of cultured cells. Recently, the constitutive-expression of Cre using retrovirus or lentivirus vector reportedly inhibited cell-growth, but the effect of transient Cre expression have not yet been examined. Here we showed that an excess amount of Cre produced from Cre-expressing rAd caused a deleterious effect in cells even when Cre was transiently expressed. We used three rAds carrying promoters with different activities: the SV40 early promoter (AxSVENCre), the SR alpha promoter (AxSRCre) and the CAG promoter (AxCANCre). Cell toxicity was clearly caused by Cre itself and was distinguishable from that caused by rAd virions when the cytopathic effects of these rAds were compared with that of a control virus lacking the Cre expression unit. Cre toxicity was strongly correlated with the expression level of Cre. Importantly, AxSRCre and AxCANCre gave a 60-fold range of effective MOIs ("effective range") sufficient for gene activation without causing cell toxicity from either the rAd particles or Cre itself, while AxSVENCre failed to give such a range because the expression level of Cre was too low. When Cre was tagged with a nuclear localization signal (NLS), not only its activity but also Cre toxicity was increased fourfold, and the effective range was unchanged. Therefore, AxSRNCre might be more useful to control cell toxicity from the rAd virions than AxSRCre. Cre-induced cell toxicity can be avoided by pre-examining the "effective range" using the purpose cell lines before starting experiments utilizing the experiment of Cre-expressing rAd.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号