首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1987年   1篇
  1978年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
11.
L-carnosine is a bioactive dipeptide (beta-alanyl-L-histidine) present in mammalian tissues, including the central nervous system, and has potential neuroprotective and neurotransmitter functions. In mammals, two types of L-carnosine-hydrolyzing enzymes (CN1 and CN2) have been cloned thus far, and they have been classified as metallopeptidases of the M20 family. The enzymatic activity of CN2 requires Mn(2+), and CN2 is inhibited by a nonhydrolyzable substrate analog, bestatin. Here, we present the crystal structures of mouse CN2 complexed with bestatin together with Zn(2+) at a resolution of 1.7 A and that with Mn(2+) at 2.3 A CN2 is a homodimer in a noncrystallographic asymmetric unit, and the Mn(2+) and Zn(2+) complexes closely resemble each other in the overall structure. Each subunit is composed of two domains: domain A, which is complexed with bestatin and two metal ions, and domain B, which provides the major interface for dimer formation. The bestatin molecule bound to domain A interacts with several residues of domain B of the other subunit, and these interactions are likely to be essential for enzyme activity. Since the bestatin molecule is not accessible to the bulk water, substrate binding would require conformational flexibility between domains A and B. The active site structure and substrate-binding model provide a structural basis for the enzymatic activity and substrate specificity of CN2 and related enzymes.  相似文献   
12.
Insect lectins are important as part of nonspecific self-defense, but their antifungal mechanisms remain to be elucidated. Fungi contain glucans on the cell surface and insect glucan-binding proteins are considered to be essential for antifungal mechanisms. We purified glucose-binding proteins from hemolymph of pupae of the silkworm Bombyx mori, and the amino acid sequence analysis showed that their two proteins are 30-kDa lipoproteins, major components of B. mori hemolymph. These lipoproteins specifically bound to glucose and glucans, suggesting that they are involved in insect self-defense systems.  相似文献   
13.
Poly-N-acetyllactosamines are attached to N-glycans, O-glycans, and glycolipids and serve as underlying glycans that provide functional oligosaccharides such as sialyl Lewis(X). Poly-N-acetyllactosaminyl repeats are synthesized by the alternate addition of beta1,3-linked GlcNAc and beta1,4-linked Gal by i-extension enzyme (iGnT) and a member of the beta1,4-galactosyltransferase (beta4Gal-T) gene family. In the present study, we first found that poly-N-acetyllactosamines in N-glycans are most efficiently synthesized by beta4Gal-TI and iGnT. We also found that iGnT acts less efficiently on acceptors containing increasing numbers of N-acetyllactosamine repeats, in contrast to beta4Gal-TI, which exhibits no significant change. In O-glycan biosynthesis, N-acetyllactosamine extension of core 4 branches was found to be synthesized most efficiently by iGnT and beta4Gal-TI, in contrast to core 2 branch synthesis, which requires iGnT and beta4Gal-TIV. Poly-N-acetyllactosamine extension of core 4 branches is, however, less efficient than that of N-glycans or core 2 branches. Such inefficiency is apparently due to competition between a donor substrate and acceptor in both galactosylation and N-acetylglucosaminylation, since a core 4-branched acceptor contains both Gal and GlcNAc terminals. These results, taken together, indicate that poly-N-acetyllactosamine synthesis in N-glycans and core 2- and core 4-branched O-glycans is achieved by iGnT and distinct members of the beta4Gal-T gene family. The results also exemplify intricate interactions between acceptors and specific glycosyltransferases, which play important roles in how poly-N-acetyllactosamines are synthesized in different acceptor molecules.  相似文献   
14.
15.
Poly-N-acetyllactosamines provide backbone structures for functional modifications such as sialyl Lewis X. To understand how the biosynthesis of poly-N-acetyllactosamines is regulated, two branched oligosaccharides of the structure Gal1,4GlcNAc1, 6(Gal1,4GlcNAc1,2)-Man1,6Man-octyl 1 and 2 were synthesized in which one of the terminal galactose units was selectively radiolabeled. Hexasaccharides 1 and 2 were assembled from the chemically synthesized pentasaccharide precursors GlcNAc1,6(Gal1,4GlcNAc1,2)-Man1,6Man-octyl3 and Gal1,4GlcNAc1,6(GlcNAc1, 2) - Man1,6 Man-octyl 4 respectively, through treatment with UDP-1-[3H]-Gal and 1,4 galactosyltransferase. Compounds 1 and 2 were subsequently incubated with UDP-GlcNAc and the UDP-GlcNAc: Gal1-4Glc(NAc)1,3-N-acetylglucosaminyltransferase (i-GlcNAc transferase) resulting in a partial conversion to a mixture of heptasaccharides which were purified by HPLC. The branch selectivity of the addition of N-acetylglucosamine to compounds 1 and 2 was then characterized by endo--galactosidase digestion of the heptasaccharides, followed by isolation of the resultant pentasaccharides on C18 reverse-phase silica cartridges. Comparison of the amount of radiolabel to a control reaction lacking endo--galactosidase indicated the favored site of GlcNAc addition to be the lower 1,2-branch over the 1,6-branch by a 3:1 ratio.  相似文献   
16.
The chitin-binding domain of human macrophage chitinase was expressed as a fusion protein with glutathione S-transferase in Escherichia coli and assayed for its binding activity. The purified recombinant chitin-binding domain bound to chitin, but not to glucan, xylan, or mannan. The binding of the recombinant chitin-binding domain to chitin was inhibited by N-acetylglucosamine, di-N-acetylchitobiose, and hyaluronan, but not by N-acetylgalactosamine or chondroitin. Furthermore, a solid-phase binding assay showed that the recombinant domain interacts specifically with hyaluronan and hybrid-type N-linked oligosaccharide chains on glycoproteins, and that the oligosaccharide-binding characteristics are similar to those of wheat germ agglutinin, a lectin that binds to chitin. The results suggest that human chitinase chitin-binding domain may be involved in tissue remodeling through binding to polysaccharides or extracellular matrix glycoproteins, and this recombinant protein can be used to elucidate biological functions of the enzyme.  相似文献   
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号