首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   12篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   5篇
  2018年   6篇
  2017年   12篇
  2016年   8篇
  2015年   9篇
  2014年   20篇
  2013年   13篇
  2012年   23篇
  2011年   13篇
  2010年   13篇
  2009年   7篇
  2008年   17篇
  2007年   14篇
  2006年   13篇
  2005年   5篇
  2004年   12篇
  2003年   5篇
  2002年   5篇
排序方式: 共有224条查询结果,搜索用时 15 毫秒
21.
Activation of the endothelin (ET) system promotes vasoconstriction, inflammation, and fibrosis in various tissues, including the lung. Therefore, ET-1 transgenic mice overexpressing ET-1 develop pulmonary fibrosis in a slow, age-dependent manner. In vivo, NO is the most important counterregulatory mediator of the ET system and decreases ET-1 promoter activity. The aim of our study was to elucidate the impact on pulmonary inflammation and fibrosis of the interaction between NO and the ET system in young ET-1 transgenic mice before the onset of pulmonary fibrosis. Male ET-1 transgenic mice and wild-type littermates at the age of 8 weeks were randomly allocated to the following 6 groups: WT (n = 11), wild-type animals without treatment; WT + l-NAME (n = 14), wild-type animals receiving l-NAME, an inhibitor of NO synthase; WT + l-NAME + LU (n = 13), wild-type animals receiving l-NAME and LU 302872, a dual ETA/ETB-receptor antagonist; ET1tg (n = 10), ET-1 transgenic mice; ET1tg + l-NAME (n = 13); and ET1tg + l-NAME + LU (n = 13). After 6 weeks, animals were euthanized, and hearts and lungs were harvested for histology and immunohistochemistry. No differences in pulmonary inflammation, as indicated by macrophage infiltration, or in interstitial fibrosis were observed between WT and ET1tg mice at baseline; however, inflammation and interstitial fibrosis were significantly enhanced in ET1tg mice, but not in WT groups, after l-NAME treatment. The combined ETA/ETB-receptor antagonist LU 302872 abolished inflammation and interstitial fibrosis in l-NAME-treated ET1tg mice. Perivascular fibrosis and media/lumen ratio of pulmonary bronchi and arteries did not differ between all study groups. In our study l-NAME induced pulmonary fibrosis and inflammation only in young ET1tg mice. Additional treatment with LU 302872 abolished these effects. We thus conclude that an imbalance between an activated ET system and a suppressed NO system contributes to pulmonary inflammation and fibrosis.  相似文献   
22.
Neuronal synaptic functional deficits are linked to impaired learning and memory in Alzheimer’s disease (AD). We recently demonstrated that O-GlcNAc, a novel cytosolic and nuclear carbohydrate post-translational modification, is enriched at neuronal synapses and positively regulates synaptic plasticity linked to learning and memory in mice. Reduced levels of O-GlcNAc have been observed in AD, suggesting a possible link to deficits in synaptic plasticity. Using lectin enrichment and mass spectrometry, we mapped several human cortical synaptic O-GlcNAc modification sites. Overlap in patterns of O-GlcNAcation between mouse and human appears to be high, as previously mapped mouse synaptic O-GlcNAc sites in Bassoon, Piccolo, and tubulin polymerization promoting protein p25 were identified in human. Novel O-GlcNAc modification sites were identified on Mek2 and RPN13/ADRM1. Mek2 is a signaling component of the Erk 1/2 pathway involved in synaptic plasticity. RPN13 is a component of the proteasomal degradation pathway. The potential interplay of phosphorylation with mapped O-GlcNAc sites, and possible implication of those sites in synaptic plasticity in normal versus AD states is discussed. iTRAQ is a powerful differential isotopic quantitative approach in proteomics. Pulsed Q dissociation (PQD) is a recently introduced fragmentation strategy that enables detection of low mass iTRAQ reporter ions in ion trap mass spectrometry. We optimized LTQ ion trap settings for PQD-based iTRAQ quantitation and demonstrated its utility in O-GlcNAc site mapping. Using iTRAQ, abnormal synaptic expression levels of several proteins previously implicated in AD pathology were observed in addition to novel changes in synaptic specific protein expression including Synapsin II.  相似文献   
23.

A new esterase gene from thermophilic bacteria Ureibacillus thermosphaericus was cloned into the pET32b vector and expressed in Escherichia coli BL21(DE3). Alignment of the estUT1 amino acid sequence revealed the presence of a novel canonical pentapeptide (GVSLG) and 41–47% identity to the closest family of the bacterial lipases XIII. Thus the esterase estUT1 from U. thermosphaericus was assigned as a member of the novel family XVIII. It also showed a strong activity toward short-chain esters (C2–C8), with the highest activity for C2. When p-nitrophenyl butyrate is used as a substrate, the temperature and pH optimum of the enzyme were 70–80 °C and 8.0, respectively. EstUT1 showed high thermostability and 68.9 ± 2.5% residual activity after incubation at 70 °C for 6 h. Homology modeling of the enzyme structure showed the presence of a putative catalytic triad Ser93, Asp192, and His222. The activity of estUT1 was inhibited by PMSF, suggesting that the serine residue is involved in the catalytic activity of the enzyme. The purified enzyme exhibited high stability in organic solvents. EstUT1 retained 85.8 ± 2.4% residual activity in 30% methanol at 50 °C for 6 h. Stability at high temperature and tolerance to organic solvents make estUT1 a promising enzyme for biotechnology application.

  相似文献   
24.
25.
Inhibitory activity against subtilisin, proteinase K, chymotrypsin and trypsin was detected in the salivary glands and saliva of the cockroach Nauphoeta cinerea (Blattoptera: Blaberidae). Fractionation of the salivary glands extract by affinity chromatography followed by reverse-phase HPLC yielded five subtilisin-inhibiting peptides with molecular masses ranging from 5 to 14 kDa. N-terminal sequences and subsequently full-length cDNAs of inhibitors designated NcPIa and NcPIb were obtained. The NcPIa cDNA contains 216 nucleotides and encodes a pre-peptide of 72 amino-acid residues of which 19 make up the signal peptide. The cDNA of NcPIb consists of 240 nucleotides and yields a putative secretory peptide of 80 amino-acid residues. Mature NcPIa (5906.6 Da, 53 residues) and NcPIb (6713.3 Da, 60 residues) are structurally similar (65.4% amino acid overlap) single-domain Kazal-type peptidase inhibitors. NcPIa with Arg in P1 position and typical Kazal motif VCGSD interacted stoichiometrically (1:1) with subtilisin and was slightly less active against proteinase K. NcPIb with Leu in P1 and modified Kazal motif ICGSD had similar activity on subtilisin and no on proteinase K but was active on chymotrypsin.  相似文献   
26.
Acid-sensitive outwardly rectifying anion channels (ASOR) have been described in several mammalian cell types. The present whole-cell patch-clamp study elucidated whether those channels are expressed in erythrocytes. To this end whole-cell recordings were made in human erythrocytes from healthy donors treated with low pH and high osmotic pressure. When the pipette solution had a reduced Cl concentration, treatment of the cells with Cl-containing normal and hyperosmotic (addition of sucrose and polyethelene glycol 1000 [PEG-1000] to the Ringer) media with low pH significantly increased the conductance of the cells at positive voltages. Channel activity was highest in the PEG-1000 media (95 and 300 mM PEG-1000, pH 4.5 and 4.3, respectively) where the current–voltage curves demonstrated strong outward rectification and reversed at −40 mV. Substitution of the Cl-containing medium with Cl-free medium resulted in a decrease of the conductance at hyperpolarizing voltages, a shift in reversal potential (to 0 mV) and loss of outward rectification. The chloride currents were inhibited by chloride channels blockers DIDS and NPPB (IC50 for both was ~1 mM) but not with niflumic acid and amiloride. The observations reveal expression of ASOR in erythrocytes.  相似文献   
27.
The minor light-harvesting complexes CP24, CP26, and CP29 have been proposed to play a key role in the zeaxanthin (Zx)-dependent high light-induced regulation (NPQ) of excitation energy in higher plants. To characterize the detailed roles of these minor complexes in NPQ and to determine their specific quenching effects we have studied the ultrafast fluorescence kinetics in knockout (ko) mutants koCP26, koCP29, and the double mutant koCP24/CP26. The data provide detailed insight into the quenching processes and the reorganization of the Photosystem (PS) II supercomplex under quenching conditions. All genotypes showed two NPQ quenching sites. Quenching site Q1 is formed by a light-induced functional detachment of parts of the PSII supercomplex and a pronounced quenching of the detached antenna parts. The antenna remaining bound to the PSII core was also quenched substantially in all genotypes under NPQ conditions (quenching site Q2) as compared with the dark-adapted state. The latter quenching was about equally strong in koCP26 and the koCP24/CP26 mutants as in the WT. Q2 quenching was substantially reduced, however, in koCP29 mutants suggesting a key role for CP29 in the total NPQ. The observed quenching effects in the knockout mutants are complicated by the fact that other minor antenna complexes do compensate in part for the lack of the CP24 and/or CP29 complexes. Their lack also causes some LHCII dissociation already in the dark.  相似文献   
28.
29.

Objective

In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.

Methods

Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).

Results

Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.

Conclusions

Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.  相似文献   
30.
In this paper, we further investigate the new paradigm for the rupture of thin cap fibroatheroma (TCFA) proposed in Vengrenyuk et al. (2006 PNAS 103:14678) using a multilevel micro-CT based 3D numerical modeling. The new paradigm proposes that the rupture of TCFA is due to stress-induced interfacial debonding of cellular--level, 10-20 microm microcalcifications in the fibrous cap proper. Such microcalcifications, which lie below the visibility of current in vivo imaging techniques, were detected for the first time using confocal microscopy and high resolution microcomputed tomography (micro-CT) imaging in Vengrenyuk et al. (2006) In the present study, we use high resolution (7 microm) micro-CT imaging to construct accurate geometries of both these microcalcifications and larger mm size macrocalcifications at the cap shoulders to evaluate their biomechanical stability. The analysis shows that cellular-level calcifications by themselves are not dangerous unless they lie in a region of high background stress. This high level of background stress only occurs in caps whose thickness is < approximately 80 microm. Whereas a spherical microcalcification will increase peak circumferential stress (PCS) by a factor of two, in agreement with previous local analytical solutions, this can be increased several fold by elongated microcalcifications. The most dangerous situation is when a microinclusion appears in close proximity to a region where the PCS is already high. This stress will be substantially increased if the inclusion is elongated. In contrast, macrocalcifications at the cap shoulders are shown to actually increase plaque stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号