首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10000篇
  免费   733篇
  国内免费   856篇
  2024年   17篇
  2023年   132篇
  2022年   311篇
  2021年   649篇
  2020年   376篇
  2019年   491篇
  2018年   486篇
  2017年   331篇
  2016年   468篇
  2015年   709篇
  2014年   841篇
  2013年   802篇
  2012年   951篇
  2011年   880篇
  2010年   513篇
  2009年   460篇
  2008年   516篇
  2007年   427篇
  2006年   338篇
  2005年   278篇
  2004年   238篇
  2003年   243篇
  2002年   201篇
  2001年   149篇
  2000年   116篇
  1999年   134篇
  1998年   76篇
  1997年   71篇
  1996年   65篇
  1995年   51篇
  1994年   43篇
  1993年   29篇
  1992年   40篇
  1991年   24篇
  1990年   22篇
  1989年   38篇
  1988年   16篇
  1987年   9篇
  1986年   9篇
  1985年   22篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1981年   2篇
  1961年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
182.
183.
为研究外源一氧化氮(NO)调控盐胁迫下长春花中酚类化合物的响应,采用液相色谱—质谱联用(LCMS)技术靶向分析梯度浓度硝普纳(SNP)处理对盐胁迫下长春花幼苗根、茎、花、叶4个部位中酚类化合物组分及含量水平的变化。结果共鉴定出L-苯丙氨酸和18种酚类物质,C6C1类5种、C6C3类5种、C6C3C6类8种,其中原儿茶酸、绿原酸、槲皮素在长春花根、茎、花、叶4个部位中均存在;不同浓度SNP处理后长春花不同部位酚类化合物响应积累明显不同,其中C6C1和C6C3小分子酚酸类化合物主要积累在根和茎中,C3C6C3类主要富集在花和叶中;L-苯丙氨酸在茎、叶中相对含量较高,盐胁迫下茎中含量显著升高,且随外源NO浓度增大呈下降趋势。外源NO影响盐胁迫下植物器官中酚类化合物的积累和变化,其中根和茎响应敏感,从种类和相对含量的角度,茎和叶更适合检测酚类化合物。  相似文献   
184.
Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.  相似文献   
185.
Dear Editor, The rapid emergence and persistence of the pandemic caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has had enormous impacts on global health and the economy.Effective vaccines against SARS-CoV-2 are urgently needed to control the coronavirus disease 2019(COVID-19) pandemic,and multiple vaccines have been found to be efficacious in preventing symptomatic COVID-19(Polack et al.,2020;Wu et al.,2020;Jones and Roy,2021).We have developed a traditional beta-propiolactone-inacti-vated aluminum hydroxide-adjuvanted whole-virion SARS-CoV-2 vaccine (BBIBP-CorV),which elicited protective immune responses in clinical trials (Wang et al.,2020;Xia et al.,2021).The vaccine has been granted conditional approvals or emergency use authorizations (EUAs) in China and other countries.  相似文献   
186.
Knowledge regarding the relationship between the molecular mechanisms underlying atherosclerosis (AS) and transfer RNA-derived small RNAs (tsRNAs) is limited. This study illustrated the expression profile of tsRNAs, thus exploring its roles in AS pathogenesis. Small RNA sequencing was performed with four atherosclerotic arterial and four healthy subject samples. Using bioinformatics, the protein-protein interaction network and cellular experiments were constructed to predict the enriched signalling pathways and regulatory roles of tsRNAs in AS. Of the total 315 tsRNAs identified to be dysregulated in the AS group, 131 and 184 were up-regulated and down-regulated, respectively. Interestingly, the pathway of the differentiated expression of tsRNAs in cell adhesion molecules (CAMs) was implicated to be closely associated with AS. Particularly, tRF-Gly-GCC might participate in AS pathogenesis via regulating cell adhesion, proliferation, migration and phenotypic transformation in HUVECs and VSMCs. In conclusion, tsRNAs might help understand the molecular mechanisms of AS better. tRF-Gly-GCC may be a promising target for suppressing abnormal vessels functions, suggesting a novel strategy for preventing the progression of atherosclerosis.  相似文献   
187.
CRISPR/Cas‐base editing is an emerging technology that could convert a nucleotide to another type at the target site. In this study, A3A‐PBE system consisting of human A3A cytidine deaminase fused with a Cas9 nickase and uracil glycosylase inhibitor was established and developed in allotetraploid Brassica napus. We designed three sgRNAs to target ALS, RGA and IAA7 genes, respectively. Base‐editing efficiency was demonstrated to be more than 20% for all the three target genes. Target sequencing results revealed that the editing window ranged from C1 to C10 of the PAM sequence. Base‐edited plants of ALS conferred high herbicide resistance, while base‐edited plants of RGA or IAA7 exhibited decreased plant height. All the base editing could be genetically inherited from T0 to T1 generation. Several Indel mutations were confirmed at the target sites for all the three sgRNAs. Furthermore, though no C to T substitution was detected at the most potential off‐target sites, large‐scale SNP variations were determined through whole‐genome sequencing between some base‐edited and wild‐type plants. These results revealed that A3A‐PBE base‐editing system could effectively convert C to T substitution with high‐editing efficiency and broadened editing window in oilseed rape. Mutants for ALS, IAA7 and RGA genes could be potentially applied to confer herbicide resistance for weed control or with better plant architecture suitable for mechanic harvesting.  相似文献   
188.
Alternative polarization of macrophages regulates multiple biological processes. While M1-polarized macrophages generally mediate rapid immune responses, M2-polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)-derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti-inflammatory role by inhibiting LPS and interferon-γ-induced M1 polarization and promoting interleukin-4-mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell-macrophage co-culture system. Experimental results showed that PGE3 inhibited the polarization of tumour-associated M2 macrophages (TAM), consequently producing indirect anti-tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti-inflammatory effect and anti-tumour effect in prostate cancer.  相似文献   
189.
190.

Naturally occurring phenanthroindolizidine and phenanthroquinolizidine alkaloids (PIAs and PQAs) are two small groups of herbal metabolites sharing a similar pentacyclic structure with a highly oxygenated phenanthrene moiety fused with a saturated or an unsaturated N-heterocycle (indolizidine/quinolizidine moieties). Natural PIAs and PQAs only could be obtained from finite plant families (such as Asclepiadaceae, Lauraceae and Urticaceae families, etc.). Up to date, more than one hundred natural PIAs, while only nine natural PQAs had been described. PIA and PQA analogues have been applied to the development of potent anticancer agents all along because of their excellent cytotoxic activity. However, in the last two decades, other great biological properties, such as anti-inflammatory and antiviral activities were revealed successively by different pharmacological assays. Especially because of their potent antiviral activity against coronavirus (TGEV, SARS CoV and MHV) and tobacco mosaic virus, PIA and PQA analogues have attracted much pharmaceutical attention again, some of them have been used to present interesting targets for total or semi synthesis, and structure–activity relationship (SAR) study for the development of antiviral agents. In this review, natural PIA and PQA analogues obtained in the last two decades with their herbal origins, key spectroscopic characteristics for structural identification, biological activity with possible SARs and application prospects were systematically summarized. We hope this paper can stimulate further investigations on PIA and PQA analogues as an important source for potential drug discovery.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号