首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   36篇
  国内免费   2篇
  2023年   4篇
  2022年   23篇
  2021年   33篇
  2020年   18篇
  2019年   29篇
  2018年   25篇
  2017年   17篇
  2016年   30篇
  2015年   35篇
  2014年   35篇
  2013年   56篇
  2012年   60篇
  2011年   47篇
  2010年   29篇
  2009年   36篇
  2008年   54篇
  2007年   46篇
  2006年   31篇
  2005年   33篇
  2004年   32篇
  2003年   23篇
  2002年   25篇
  2001年   10篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1995年   1篇
  1993年   4篇
  1992年   4篇
  1990年   4篇
  1988年   6篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1983年   4篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1976年   2篇
  1975年   3篇
  1974年   5篇
  1973年   5篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
排序方式: 共有817条查询结果,搜索用时 15 毫秒
181.
The mechanisms leading to non-lethality of nonsense mutations in essential genes are poorly understood. Here, we focus on the factors influencing viability of yeast cells bearing premature termination codons (PTCs) in the essential gene SUP45 encoding translation termination factor eRF1. Using a dual reporter system we compared readthrough efficiency of the natural termination codon of SUP45 gene, spontaneous sup45-n (nonsense) mutations, nonsense mutations obtained by site-directed mutagenesis (76Q → TAA, 242R → TGA, 317L → TAG). The nonsense mutations in SUP45 gene were shown to be situated in moderate contexts for readthrough efficiency. We showed that readthrough efficiency of some of the mutations present in the sup45 mutants is not correlated with full-length Sup45 protein amount. This resulted from modification of both sup45 mRNA stability which varies 3-fold among sup45-n mutants and degradation rate of mutant Sup45 proteins. Our results demonstrate that some substitutions in the place of PTCs decrease Sup45 stability. The viability of sup45 nonsense mutants is therefore supported by diverse mechanisms that control the final amount of functional Sup45 in cells.  相似文献   
182.
Several models of the effects of silviculture, radial growth, and tree age on wood density have been developed, but they have rarely considered the roles of diverse seed origins and climate. We developed a model to test the effects of radial growth, tree age, climate, and seed-source origins on wood density in 21 diverse populations of jack pine in a common garden in Petawawa, Ontario, Canada over the last 24 years using a linear mixed-effects model. Although we found significant differences in wood density among diverse seed origins, there were no differences between seed origins having the same ring age and ring width, indicating an indirect effect on wood density of seed-source origin via radial growth. High variation in wood density among trees within the same population and between populations indicated high genetic control of wood density. The climate effect was significant on wood density in all populations, but smaller when radial growth was controlled. Climate effect did not differ significantly among populations. Precipitation in July negatively affected latewood density, whereas precipitation in May in the current year and September of the previous year negatively affected earlywood density. We concluded that a single model of jack pine wood density and radial growth could be used, either controlling for climate effects or not, as the relationship between wood density and radial growth is preserved among the diverse populations, and the climate effect controlling for radial growth in the model was only slight.  相似文献   
183.
We present a novel approach for stimulating uptake via endocytic pathways by exposing cells to a train of pulsed low electric fields (LEF) in the range of 2.5-20 V/cm. Electric field treatment of COS 5-7 and HaCaT cells in the presence of BSA-FITC augments the adsorption of the probe to plasma membranes with subsequent enhanced internalization. The uptake of BSA-FITC is maximal when the cells are exposed to LEF in the presence of the probe while uptake of a fluid-phase marker, propidium iodide (PI), is more effective when the probe is added immediately after termination of a 1-min exposure. LEF-stimulated uptake decays with a half-life of about 3 and 1 min for and BSA-FITC and PI, respectively. The uptake is inefficient at 4 degrees C but increases with temperature. The uptake proceeds via cell membrane vesiculation, showing a high extent of colocalization of BSA-FITC with plasma membrane vesicles labeled with a phospholipid fluorescent analogue. Unlike constitutive endocytosis where the BSA-FITC is exposed to acidic pH, in LEF-induced uptake the probe is exposed to the more alkaline pH of the cytosol. The staining kinetics of nuclear targets by PI reflects the release of the probe from the LEF-induced vesicles into the cytosol 1-3 h after exposure. The LEF-induced adsorptive pathway was approximately 2.5 more effective than the LEF-induced fluid-phase one. The observed 5- to 6-fold increase of BSA-FITC uptake induced by LEF may be partially attributed to a clathrin-dependent route (up to 25%), whereas the rest of the uptake may be assigned to macropinocytotic and clathrin/caveolin independent pathways or to a novel, yet unidentified, route driven by LEF. This study provides a basis for a general approach towards the efficient incorporation of a variety of molecules such as antibodies, enzymes or genes into cells.  相似文献   
184.
Glutathione acts as a universal scavenger of free radicals at the expense of the formation of the glutathionyl radicals (GS*). Here we demonstrated that GS* radicals specifically interact with a reporter molecule, paramagnetic and non-fluorescent 4-((9-acridinecarbonyl)-amino)-2,2,6,6-tetramethylpiperidine-1-oxyl (Ac-Tempo), and convert it into a non-paramagnetic fluorescent product, identified as 4-((9-acridinecarbonyl)amino)-2,2,6,6-tetramethylpiperidine (Ac-piperidine). Horseradish peroxidase-, myeloperoxidase-, and cyclooxygenasecatalyzed oxidation of phenol in the presence of H2O2 and GSH caused the generation of phenoxyl radicals and GS* radicals, of which only the latter reacted with Ac-Tempo. Oxidation of several other phenolic compounds (e.g. etoposide and tyrosine) was accompanied by the formation of GS* radicals along with a characteristic fluorescence response from Ac-Tempo. In myeloperoxidase-rich HL-60 cells treated with H2O2 and phenol, fluorescence microscopic imaging of Ac-Tempo revealed the production of GS* radicals. A thiol-blocking reagent, N-ethylmaleimide, as well as myeloperoxidase inhibitors (succinyl acetone and azide), blocked formation of fluorescent acridine-piperidine. H2O2/phenolinduced peroxidation of major classes of phospholipids in HL-60 cells was completely inhibited by Ac-Tempo, indicating that GS* radicals were responsible for phospholipid peroxidation. Thus, GSH, commonly viewed as a universal free radical scavenger and major intracellular antioxidant, acts as a pro-oxidant during myeloperoxidase-catalyzed metabolism of phenol in HL-60 cells.  相似文献   
185.
The comparative study of immune response after immunization of adults with adsorbed DT toxoid with reduced antigen content and Imovax-DT-adulte vaccine, as well as the safety of these preparations, was made. The study revealed that immunization of adults with adsorbed DT toxoid having reduced antigen content, made in two injections, and the injection of Imovax-DT-dulte vaccine, as well as the successive injection of these preparations, produced the same the levels of antitetanus immunity. Antidiphtheria immunity, evaluated by the number of seroconverted to diphtheria persons following two injections immunization was similar for the two preparations, while the level of antidiphtheria antibodies was higher in persons immunized with adsorbed DT toxoid. The immune stratum index was rather high among persons aged 16-29 years. This age group exhibited the highest number of persons, seropositive to both diphtheria and tetanus. Both vaccine preparations, adsorbed DT toxoid with reduced antigen content and Imovax-DT-adulte vaccine, were found to be equally capable of inducing autoimmune reactions in the vaccinees, detected by laboratory methods.  相似文献   
186.
A new nonmotile purple sulfur bacterium (strain M9) was isolated from the steppe soda lake Lake Dzun Uldziin Nur (pH 9.4; mineralization, 3.3%) situated in southeastern Mongolia. Individual cells appear as vibrios 0.3–0.5 × 0.7–1 m in size. The dividing cells often do not separate from each other, forming an almost closed ring. The internal photosynthetic membranes are represented by concentric lamellae lining the cell wall. Photosynthetic pigments are bacteriochlorophyll a and carotenoids of the spirilloxanthin series. The main carotenoid (>96%) is spirilloxanthin. Two typical light-harvesting complexes (LH1 and LH2) are present in the membranes in a 1 : 1 ratio. The bacterium is an anaerobe and facultative photoorganoheterotroph. Photolithoautotrophic growth on sulfide is scarce. Thiosulfate is utilized as an electron donor only in the presence of organic matter. Globules of elemental sulfur are formed as an intermediary product of sulfide and thiosulfate oxidation and are deposited outside the cells. The end product of oxidation is sulfate. In the presence of sulfide and carbonates, acetate, lactate, malate, pyruvate, propionate, succinate, and fumarate are used as additional sources of carbon in anoxygenic photosynthesis. Vitamins are not required. The bacterium is an alkaliphile, the pH optimum is at 8.3–9.1, the pH range is 7.6–10.1. The optimum NaCl concentration in the medium is 1 to 7%; the range is 0.5 to 0.9%. The optimum carbonate content in the medium is 2%; the range is 1 to 10%. The best growth occurs at 30–35°C. The DNA G+C content is 57.5 mol %. According to the results of analysis of the 16S rRNA gene sequences, the new isolate M9 belongs to the phylogenetic cluster containing representatives of the family Ectothiorhodospiraceae within the class Gammaproteobacteria. In this class, the new isolate forms a new branch, which occupies an intermediate position between the representatives of the genera Ectothiorhodospira and Thiorhodospira. Based on the phenotypic and genetic characteristics, the new purple sulfur bacterium was assigned to a new species of a new genus of the family Ectothiorhodospiraceae, Ectothiorhodosinus mongolicum gen. nov., sp. nov.  相似文献   
187.
The role of the inositol lipid 5-phosphatase (SHIP2) in preadipocyte signaling is not known. Although overexpression of SHIP2 inhibited proliferation and (3)H-thymidine incorporation in 3T3-L1 preadipocytes, there was no effect on insulin-induced adipogenesis. Insulin promoted SHIP2 tyrosine phosphorylation in differentiated 3T3-L1 adipocytes, but did not do so in preadipocytes. The absence of SHIP2 tyrosine phosphorylation suggests a potential explanation for the isolated rise in PI(3,4,5)P3, without any changes in PI(3,4)P2, previously observed following insulin treatment of these cells. Lack of SHIP2 tyrosine phosphorylation by insulin was also observed in primary cultures of human abdominal subcutaneous preadipocytes. These cells also produced PI(3,4,5)P3, but not PI(3,4)P2, in response to insulin. Comparison of insulin vs. PDGF treatment on SHIP2 tyrosine phosphorylation in 3T3-L1 and human preadipocytes revealed that only PDGF, which stimulates the accumulation of PI(3,4,5)P3 as well as PI(3,4)P2, was active in this regard, and only PDGF promoted the association of 52 kDa form of Shc with SHIP2. Nevertheless, both insulin and PDGF were equally effective in translocating SHIP2 to the plasma membrane in 3T3-L1 preadipocytes. Lack of SHIP2 tyrosine phosphorylation may account for the insulin-specific inositol phospholipid pattern of accumulation in preadipocytes.  相似文献   
188.
Resolution of inflammation requires clearance of activated neutrophils by phagocytes in a manner that protects adjacent tissues from injury. Mechanisms governing apoptosis and clearance of activated neutrophils from inflamed areas are still poorly understood. We used dimethylsulfoxide-differentiated HL-60 cells showing inducible oxidase activity to study NADPH oxidase-induced apoptosis pathways typical of neutrophils. Activation of the NADPH oxidase by phorbol myristate acetate caused oxidative stress as shown by production of superoxide and hydrogen peroxide, depletion of intracellular glutathione, and peroxidation of all three major classes of membrane phospholipids, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine. In addition, phorbol myristate acetate stimulation of the NADPH oxidase caused apoptosis, as evidenced by apoptosis-specific phosphatidylserine externalization, increased caspase-3 activity, chromatin condensation, and nuclear fragmentation. Furthermore, phorbol myristate acetate stimulation of the NADPH oxidase caused recognition and ingestion of dimethylsulfoxide-differentiated HL-60 cells by J774A.1 macrophages. To reveal the apoptosis-related component of oxidative stress in the phorbol myristate acetate-induced response, we pretreated cells with a pancaspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk), and found that it caused partial inhibition of hydrogen peroxide formation as well as selective protection of only phosphatidylserine, whereas more abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine, were oxidized to the same extent in the absence or presence of z-VAD-fmk. In contrast, inhibitors of NADPH oxidase activity, diphenylene iodonium and staurosporine, as well as antioxidant enzymes, superoxide dismutase/catalase, completely protected all phospholipids against peroxidation, inhibited expression of apoptotic biomarkers and externalization of phosphatidylserine, and reduced phagocytosis of differentiated HL-60 cells by J774A.1 macrophages. Similarly, zymosan-induced activation of the NADPH oxidase resulted in the production of superoxide and oxidation of different classes of phospholipids of which only phosphatidylserine was protected by z-VAD-fmk. Accordingly, zymosan caused apoptosis in differentiated HL-60 cells, as evidenced by caspase-3 activation and phosphatidylserine externalization. Finally, zymosan triggered caspase-3 activation and extensive SOD/catalase-inhibitable phosphatidylserine exposure in human neutrophils. Overall, our results indicate that NADPH oxidase-induced oxidative stress in neutrophil-like cells triggers apoptosis and subsequent recognition and removal of these cells through pathways dependent on oxidation and externalization of phosphatidylserine.  相似文献   
189.
An antibody directed against Kit protein was used to investigate the distribution of interstitial cells of Cajal (ICC) within the murine colon. The ICC density was greatest in the proximal colon and decreased along its length. The distribution of the different classes of ICC in the aganglionic colons of lethal spotted (ls/ls) mice was found to be similar in age-matched wild-type controls. There were marked differences in the electrical activities of the colons from ls/ls mutants compared with wild-type controls. In ls/ls aganglionic colons, the circular muscle was electrically quiescent compared with the spontaneous spiking electrical activity of wild-type tissues. In ls/ls aganglionic colons, postjunctional neural responses were greatly affected. Inhibitory junction potentials were absent or excitatory junction potentials inhibited by atropine were observed. In conclusion, the distribution of ICC in the ganglionic and aganglionic regions of the colons from ls/ls mutants appeared similar to that of wild-type controls. The electrical activity and neural responses of the circular layer are significantly different in aganglionic segments of ls/ls mutants.  相似文献   
190.
Proteins exist in one of two generally incompatible states: either membrane associated or soluble. Pore-forming proteins are exceptional because they are synthesized as a water-soluble molecule but end up being located in the membrane -- that is, they are nonconstitutive membrane proteins. Here we report the pronounced effect of the single point mutation Y221G of the pore-forming toxin aerolysin. This mutation blocks the hemolytic activity of the toxin but does not affect its initial structure, its ability to bind to cell-surface receptors or its capacity to form heptamers, which constitute the channel-forming unit. The overall structure of the Y221G protein as analyzed by cryo-negative staining EM and three-dimensional reconstruction is remarkably similar to that of the wild type heptamer. The mutant protein forms a mushroom-shaped complex whose stem domain is thought to be within the membrane in the wild type toxin. In contrast to the wild type heptamer, which is a hydrophobic complex, the Y221G heptamer is fully hydrophilic. This point mutation has, therefore, converted a normally membrane-embedded toxin into a soluble complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号