首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   588篇
  免费   34篇
  国内免费   2篇
  2023年   3篇
  2022年   16篇
  2021年   32篇
  2020年   16篇
  2019年   25篇
  2018年   22篇
  2017年   13篇
  2016年   22篇
  2015年   33篇
  2014年   31篇
  2013年   54篇
  2012年   56篇
  2011年   46篇
  2010年   24篇
  2009年   29篇
  2008年   39篇
  2007年   34篇
  2006年   22篇
  2005年   29篇
  2004年   27篇
  2003年   16篇
  2002年   18篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1980年   2篇
  1979年   2篇
排序方式: 共有624条查询结果,搜索用时 46 毫秒
151.
152.
Ferroptosis is an oxidative and iron-dependent form of regulated cell death (RCD) recently described in eukaryotic organisms like animals, plants, and parasites. Here, we report that a similar process takes place in the photosynthetic prokaryote Synechocystis sp. PCC 6803 in response to heat stress. After a heat shock, Synechocystis sp. PCC 6803 cells undergo a cell death pathway that can be suppressed by the canonical ferroptosis inhibitors, CPX, vitamin E, Fer-1, liproxstatin-1, glutathione (GSH), or ascorbic acid (AsA). Moreover, as described for eukaryotic ferroptosis, this pathway is characterized by an early depletion of the antioxidants GSH and AsA, and by lipid peroxidation. These results indicate that all of the hallmarks described for eukaryotic ferroptosis are conserved in photosynthetic prokaryotes and suggest that ferroptosis might be an ancient cell death program.  相似文献   
153.
Micropatterning approaches using self-assembled monolayers of alkyl thiols on gold are not optimal for important imaging modalities in cell biology because of absorption of light and scattering of electrons by the gold layer. We report here an anisotropic solid microetching (ASOMIC) procedure that overcomes these limitations. The method allows molecular dynamics imaging by wide-field and total internal reflection fluorescence (TIRF) microscopy of living mammalian cells and correlative platinum replica electron microscopy.  相似文献   
154.
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150(Glued) and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH(2)-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH(2) and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips.  相似文献   
155.
Einav Y  Agami R  Canaani D 《FEBS letters》2005,579(1):199-202
Previously, we demonstrated the establishment of synthetic lethality screening in cultured somatic human cells, or mouse embryo fibroblasts (MEFs), for chemicals or mutant genes synergistically lethal with a mutated gene of interest. Here, we show in MEFs that the usage of RNA interference-based genetic suppressor elements encoding short hairpin RNAs (shRNAs) enables for genetic synthetic lethality screening at a frequency much higher than that achieved before with short truncated sense and antisense RNAs. These findings open up the possibility of using in mammalian cells genome-wide shRNA libraries for genetic synthetic lethality screening at the multi-gene level.  相似文献   
156.
Pot1 (protection of telomeres 1) is a single-stranded telomere binding protein that is essential for chromosome end protection and telomere length homeostasis. Arabidopsis encodes two Pot1-like proteins, dubbed AtPot1 and AtPot2. Here we show that telomeres in transgenic plants expressing a truncated AtPot1 allele lacking the N-terminal oligonucleotide/oligosaccharide binding fold (P1DeltaN) are 1 to 1.5 kb shorter than in the wild type, suggesting that AtPot1 contributes to the positive regulation of telomere length control. In contrast, telomere length is unperturbed in plants expressing the analogous region of AtPot2. A strikingly different phenotype is observed in plants overexpressing the AtPot2 N terminus (P2DeltaC) but not the corresponding region in AtPot1. Although bulk telomeres in P2DeltaC mutants are 1 to 2 kb shorter than in the wild type, these plants resemble late-generation telomerase-deficient mutants with severe growth defects, sterility, and massive genome instability, including bridged chromosomes and aneuploidy. The genome instability associated with P2DeltaC mutants implies that AtPot2 contributes to chromosome end protection. Thus, Arabidopsis has evolved two Pot genes that function differently in telomere biology. These findings provide unanticipated information about the evolution of single-stranded telomere binding proteins.  相似文献   
157.
Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%. The Ca2+ load in mitochondria from glutamate-treated neurons was estimated to be 167 +/- 19 nmol/mg protein. The glutamate-induced Ca2+ load was less than the maximal Ca2+ uptake capacity of the mitochondria determined in vitro (363 +/- 35 nmol/mg protein). Comparatively, mitochondria isolated from cerebellar granule cells demonstrated a higher Ca2+ uptake capacity (686 +/- 71 nmol/mg protein) than the cortical mitochondria, and the glutamate-induced load of Ca2+ was a smaller percentage of the maximal Ca2+ uptake capacity. Thus, this study indicated that Ca(2+)-induced impairment of mitochondrial ATP production is an early event in the excitotoxic cascade that may contribute to decreased cellular ATP and loss of ionic homeostasis that precede commitment to neuronal death.  相似文献   
158.
Syntheses of specified 2'-modified nucleosides were achieved: a) via oximation of the 5',3'-blocked 2'-oxocytidine, followed by reduction, or b) by intramolecular nucleophilic addition of 3'-(2-methoxyethoxy)carbamate to the 2'-position with opening of O(2),2'-anhydrouridine. For the first time, 3'-phosphoroamidites of these 2'-modified nucleosides were successfully incorporated into oligonucleotides by solid-phase synthesis. Incorporation of 2'-modified nucleotides into oligodeoxyribonucleotides had a negative effect on the duplex T(m) values with the DNA or RNA complements. Nevertheless, modified nucleotides have shown good target recognition; the (S)-isomer binds preferably to RNA and the (R)-isomer to DNA. Both modified nucleosides significantly increased nuclease resistance of the oligodeoxyribonucleotides.  相似文献   
159.
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor activates IKK complex, which leads to inducement of NF-kappaB activity. Here we report that activation of Mpl ligand is also linked to IKK and NF-kappaB activity. Mpl ligand, also known as thrombopoietin (TPO) or megakaryocyte growth and development factor (MGDF), induces megakaryocyte differentiation and inhibition of mitotic proliferation, followed by induction of polyploidization and fragmentation into platelets. The latter process is often observed in megakaryocytes undergoing apoptosis. Treatment of a Mpl ligand-responding megakaryocytic cell line with this cytokine led to an immediate, transient increase in IKK activity followed by a profound decrease in this kinase activity over time. This decrease was not due to an effect on the levels of the IKK regulatory components IKKalpha and IKKbeta. Proliferating megakaryocytes displayed a constitutive DNA-binding activity of NF-kappaB p50 homodimers and of NF-kappaB p50-p65 heterodimers. As expected, reduced IKK activity in Mpl ligand-treated cells was associated with a significant reduction in NF-kappaB DNA binding activity and in the activity of a NF-kappaB-dependent promoter. Our study is thus the first to identify a constitutive NF-kappaB activity in proliferating megakaryocytes as well as to describe a link between Mpl receptor signaling and IKK and NF-kappaB activities. Since a variety of proliferation-promoting genes and anti-apoptotic mechanisms are activated by NF-kappaB, retaining its low levels would be one potential mechanism by which inhibition of mitotic proliferation is maintained and apoptosis is promoted during late megakaryopoiesis.  相似文献   
160.
The integrins are a family of membrane receptors that attach a cell to its surrounding and play a crucial function in cell signaling. The combination of internal and external stimuli alters a folded non-active state of these proteins to an extended active configuration. The β3 subunit of the platelet αIIbβ3 integrin is made of well-structured domains rich in disulfide bonds. During the activation process some of the disulfides are re-shuffled by a mechanism requiring partial reduction of some of these bonds; any disruption in this mechanism can lead to inherent blood clotting diseases. In the present study we employed Molecular Dynamics simulations for tracing the sequence of structural fluctuations initiated by a single cysteine mutation in the β3 subunit of the receptor. These simulations showed that in-silico protein mutants exhibit major conformational deformations leading to possible disulfide exchange reactions. We suggest that any mutation that prevents Cys560 from reacting with one of the Cys567–Cys581 bonded pair, thus disrupting its ability to participate in a disulfide exchange reaction, will damage the activation mechanism of the integrin. This suggestion is in full agreement with previously published experiments. Furthermore, we suggest that rearrangement of disulfide bonds could be a part of a natural cascade of thiol/disulfide exchange reactions in the αIIbβ3 integrin, which are essential for the native activation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号