首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   17篇
  国内免费   14篇
  250篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   2篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   13篇
  2012年   14篇
  2011年   7篇
  2010年   11篇
  2009年   18篇
  2008年   9篇
  2007年   7篇
  2006年   9篇
  2005年   9篇
  2004年   12篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1981年   1篇
  1977年   4篇
  1976年   2篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1948年   1篇
  1923年   1篇
排序方式: 共有250条查询结果,搜索用时 12 毫秒
31.
Spatiotemporal analysis of exocytosis in mouse parotid acinar cells   总被引:1,自引:0,他引:1  
Exocrine cells of the digestive system are specialized to secrete protein and fluid in response to neuronal and/or hormonal input. Although morphologically similar, parotid and pancreatic acinar cells exhibit important functional divergence in Ca2+ signaling properties. To address whether there are fundamental differences in exocytotic release of digestive enzyme from exocrine cells of salivary gland versus pancreas, we applied electrophysiological and optical methods to investigate spatial and temporal characteristics of zymogen-containing secretory granule fusion at the single-acinar cell level by direct or agonist-induced Ca2+ and cAMP elevation. Temporally resolved membrane capacitance measurements revealed that two apparent phases of exocytosis were induced by Ca2+ elevation: a rapidly activated initial phase that could not be resolved as individual fusion events and a second phase that was activated after a delay, increased in a staircaselike fashion, was augmented by cAMP elevation, and likely reflected both sequential compound and multivesicular fusion of zymogen-containing granules. Optical measurements of exocytosis with time-differential imaging analysis revealed that zymogen granule fusion was induced after a minimum delay of 200 ms, occurred initially at apical and basolateral borders of acinar cells, and under strong stimulation proceeded from apical pole to deeper regions of the cell interior. Zymogen granule fusions appeared to coordinate subsequent fusions and produced persistent structures that generally lasted several minutes. In addition, parotid gland slices were used to assess secretory dynamics in a more physiological context. Parotid acinar cells were shown to exhibit both similar and divergent properties compared with the better-studied pancreatic acinar cell regarding spatial organization and kinetics of exocytotic fusion of zymogen granules. membrane capacitance; differential imaging; zymogen; gland slice; exocrine cells  相似文献   
32.
33.

Background  

Elucidation of the communal behavior of microbes in mixed species biofilms may have a major impact on understanding infectious diseases and for the therapeutics. Although, the structure and the properties of monospecies biofilms and their role in disease have been extensively studied during the last decade, the interactions within mixed biofilms consisting of bacteria and fungi such as Candida spp. have not been illustrated in depth. Hence, the aim of this study was to evaluate the interspecies interactions of Pseudomonas aeruginosa and six different species of Candida comprising C. albicans, C. glabrata, C. krusei, C. tropicalis, C. parapsilosis, and C. dubliniensis in dual species biofilm development.  相似文献   
34.
Autophagy is a conserved pathway for the bulk degradation of cytoplasmic components in all eukaryotes. This process plays a critical role in the adaptation of plants to drastic changing environmental stresses such as starvation, oxidative stress, drought, salt, and pathogen invasion. This paper summarizes the current knowledge about the mechanism and roles of plant autophagy in various plant stress responses.  相似文献   
35.
Most aerial parts of the plant body are products of the continuous activity of the shoot apical meristem (SAM). Leaves are the major component of the aerial plant body, and their temporal and spatial distribution mainly determines shoot architecture. Here we report the identification of the rice gene PLASTOCHRON3 ( PLA3 )/ GOLIATH ( GO ) that regulates various developmental processes including the rate of leaf initiation (the plastochron). PLA3 / GO encodes a glutamate carboxypeptidase, which is thought to catabolize small acidic peptides and produce small signaling molecules. pla3 exhibits similar phenotypes to pla1 and pla2 – a shortened plastochron, precocious leaf maturation and rachis branch-to-shoot conversion in the reproductive phase. However, in contrast to pla1 and pla2 , pla3 showed pleiotropic phenotypes including enlarged embryo, seed vivipary, defects in SAM maintenance and aberrant leaf morphology. Consistent with these pleiotropic phenotypes, PLA3 is expressed in the whole plant body, and is involved in plant hormone homeostasis. Double mutant analysis revealed that PLA1 , PLA2 and PLA3 are regulated independently but function redundantly. Our results suggest that PLA3 modulates various signaling pathways associated with a number of developmental processes.  相似文献   
36.
37.
38.

Background  

It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood.  相似文献   
39.
40.
In nonexcitable cells, such as exocrine cells from the pancreas and salivary glands, agonist-stimulated Ca2+ signals consist of both Ca2+ release and Ca2+ influx. We have investigated the contribution of these processes to membrane-localized Ca2+ signals in pancreatic and parotid acinar cells using total internal reflection fluorescence (TIRF) microscopy (TIRFM). This technique allows imaging with unsurpassed resolution in a limited zone at the interface of the plasma membrane and the coverslip. In TIRFM mode, physiological agonist stimulation resulted in Ca2+ oscillations in both pancreas and parotid with qualitatively similar characteristics to those reported using conventional wide-field microscopy (WFM). Because local Ca2+ release in the TIRF zone would be expected to saturate the Ca2+ indicator (Fluo-4), these data suggest that Ca2+ release is occurring some distance from the area subjected to the measurement. When acini were stimulated with supermaximal concentrations of agonists, an initial peak, largely due to Ca2+ release, followed by a substantial, maintained plateau phase indicative of Ca2+ entry, was observed. The contribution of Ca2+ influx and Ca2+ release in isolation to these near-plasma membrane Ca2+ signals was investigated by using a Ca2+ readmission protocol. In the absence of extracellular Ca2+, the profile and magnitude of the initial Ca2+ release following stimulation with maximal concentrations of agonist or after SERCA pump inhibition were similar to those obtained with WFM in both pancreas and parotid acini. In contrast, when Ca2+ influx was isolated by subsequent Ca2+ readmission, the Ca2+ signals evoked were more robust than those measured with WFM. Furthermore, in parotid acinar cells, Ca2+ readdition often resulted in the apparent saturation of Fluo-4 but not of the low-affinity dye Fluo-4-FF. Interestingly, Ca2+ influx as measured by this protocol in parotid acinar cells was substantially greater than that initiated in pancreatic acinar cells. Indeed, robust Ca2+ influx was observed in parotid acinar cells even at low physiological concentrations of agonist. These data indicate that TIRFM is a useful tool to monitor agonist-stimulated near-membrane Ca2+ signals mediated by Ca2+ influx in exocrine acinar cells. In addition, TIRFM reveals that the extent of Ca2+ influx in parotid acinar cells is greater than pancreatic acinar cells when compared using identical methodologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号