首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3297篇
  免费   185篇
  3482篇
  2023年   11篇
  2022年   20篇
  2021年   33篇
  2020年   24篇
  2019年   40篇
  2018年   50篇
  2017年   52篇
  2016年   76篇
  2015年   116篇
  2014年   145篇
  2013年   172篇
  2012年   236篇
  2011年   232篇
  2010年   157篇
  2009年   148篇
  2008年   244篇
  2007年   219篇
  2006年   223篇
  2005年   221篇
  2004年   224篇
  2003年   168篇
  2002年   202篇
  2001年   33篇
  2000年   35篇
  1999年   45篇
  1998年   44篇
  1997年   29篇
  1996年   32篇
  1995年   22篇
  1994年   18篇
  1993年   19篇
  1992年   25篇
  1991年   15篇
  1990年   18篇
  1989年   10篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   9篇
  1984年   19篇
  1983年   18篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1977年   3篇
  1976年   4篇
  1972年   2篇
  1969年   5篇
  1968年   2篇
排序方式: 共有3482条查询结果,搜索用时 15 毫秒
991.
992.
Osteoimmunology: interactions of the immune and skeletal systems   总被引:7,自引:0,他引:7  
Bone is a dynamic tissue that provides mechanical support, physical protection, and enables movement. Bone also serves as a storage site for minerals and is where blood cells are produced. Bone homeostasis is regulated by the balance between bone formation and resorption, and involves the coordinated action of osteoblasts and osteoclasts. Osteoblasts are bone-forming cells that secrete organic matrix molecules, while osteoclasts are derived from hematopoietic precursors and resorb bone matrix. Although osteoblasts and osteoclasts are the major regulators of bone metabolism and are regulated by the local microenvironment, it has recently come to be appreciated that skeletal system homeostasis is greatly influenced by components of the immune system. For example, some pathological bone resorption observed under inflammatory conditions has been shown to be due, in part, to direct and indirect effects of activated T cells on osteoclasts. In this regard, we would like to review current progress and perspectives in "osteoimmunology", an interdisciplinary research principle governing the cross-talk between the bone and immune systems. Better understanding of how the osteoimmune system operates in normal and pathological situations is likely to lay the groundwork for future therapies for the variety of diseases that affect both bone and the immune system.  相似文献   
993.
The phagocyte NADPH oxidase is a multisubunit enzyme responsible for the generation of superoxide anions (O(2).) that kill invading microorganisms. p47(phox) is a cytosolic subunit of the phagocyte NADPH oxidase, which plays a crucial role in the assembly of the activated NADPH oxidase complex. The molecular shapes of the p47(phox) tandem SH3 domains either with or without a polybasic/autoinhibitory region (PBR/AIR) at the C terminus were studied using small angle x-ray scattering. The tandem SH3 domains with PBR/AIR formed a compact globular structure, whereas the tandem SH3 domains lacking the PBR/AIR formed an elongated structure. Alignment anisotropy analysis by NMR based on the residual dipolar couplings revealed that the tandem SH3 domains with PBR/AIR were in good agreement with a globular module corresponding to the split half of the intertwisted dimer in crystalline state. The structure of the globular module was elucidated to represent a solution structure of the tandem SH3 domain in the autoinhibited form, where the PBR/AIR bundled the tandem SH3 domains and the linker forming a closed structure. Once PBR/AIR is released by phosphorylation, rearrangements of the SH3 domains may occur, forming an open structure that binds to the cytoplasmic proline-rich region of membrane-bound p22(phox).  相似文献   
994.
Neuropathic pain is absent from the early stages of periodontal disease possibly due to neurite retraction. Butyric acid (BA) is a periodontopathic metabolite that activates several stress-related signals and, likewise, induce neurite retraction. Neuronal cell death is associated to neurite retraction which would suggest that BA-induced neurite retraction is ascribable to neuronal cell death. However, the underlying mechanism of BA-related cell death signaling remains unknown. In this study, we exposed NGF-treated PC12 cells to varying BA concentrations [0 (control), 0.5, 1.0, 5.0 mM] and determined selected stress-related (H2O2, glutathione reductase, calcium (Ca2+), plasma membrane Ca2+ ATPase (PMCA), and GADD153/CHOPS) and cell death-associated (extrinsic: FasL, TNF-α, TWEAK, and TRAIL; intrinsic: cytochrome C (CytC), NF-kB, CASP8, CASP9, CASP10, and CASP3) signals. Similarly, we confirmed cell death execution by chromatin condensation. Our results showed that low (0.5 mM) and high (1.0 and 5.0 mM) BA levels differ in stress and cell death signaling. Moreover, at periodontal disease-level BA concentration (5 mM), we observed that only FasL amounts were affected and occurred concurrently with chromatin condensation insinuating that cells have fully committed to neurodegeneration. Thus, we believe that both stress and cell death signaling in NGF-treated PC12 cells are affected differently depending on BA concentration. In a periodontal disease scenario, we hypothesize that during the early stages, low BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurite non-proliferation, whereas, during the later stages, high BA amounts accumulate resulting to both stress- and cell death-related signals that favor neurodegeneration. More importantly, we propose that neuropathic pain absence at any stage of periodontal disease progression is ascribable to BA accumulation regardless of amount.  相似文献   
995.
Although the amiloride-sensitive epithelial sodium channel (ENaC) plays an important role in the modulation of alveolar liquid clearance, the precise mechanism of its regulation in alveolar epithelial cells is still under investigation. Protein kinase C (PKC) has been shown to alter ENaC expression and activity in renal epithelial cells, but much less is known about its role in alveolar epithelial cells. The objective of this study was to determine whether PKC activation modulates ENaC expression and transepithelial Na+ transport in cultured rat alveolar epithelial cells. Alveolar type II cells were isolated and cultured for 3 to 4 d before they were stimulated with phorbol 12-myristate 13-acetate (PMA 100 nmol/L) for 4 to 24 h. PMA treatment significantly decreased alpha, beta, and gammaENaC expression in a time-dependent manner, whereas an inactive form of phorbol ester had no apparent effect. This inhibitory action was seen with only 5-min exposure to PMA, which suggested that PKC activation was very important for the reduction of alphaENaC expression. The PKC inhibitors bisindolylmaleimide at 2 micromol/L and G?6976 at 2 micromol/L diminished the PMA-induced suppression of alphaENaC expression, while rottlerin at 1 micromol/L had no effect. PMA elicited a decrease in total and amiloride-sensitive current across alveolar epithelial cell monolayers. This decline in amiloride-sensitive current was not blocked by PKC inhibitors except for a partial inhibition with bisindolylmaleimide. PMA induced a decrease in rubidium uptake, indicating potential Na+-K+-ATPase inhibition. However, since ouabain-sensitive current in apically permeabilized epithelial cells was similar in PMA-treated and control cells, the inhibition was most probably related to reduced Na+ entry at the apical surface of the cells. We conclude that PKC activation modulates ENaC expression and probably ENaC activity in alveolar epithelial cells. Ca2+-dependent PKC is potentially involved in this response.  相似文献   
996.
997.
We have previously reported that YO-2, a selective plasmin inhibitor, induces thymocyte apoptosis. To elucidate the mechanism of YO-2-induced apoptosis, other YO compounds with different plasmin inhibitory action were tested for the pro-apoptotic activity in this study. The treatment of rat thymocytes with the YO compounds which had the hydrophobic but not the hydrophilic moiety at the C-terminal increased DNA fragmentation, the number of condensed nuclei and caspase-3-like activity. All pro-apoptotic YO compounds not only were potent plasmin inhibitors but also had the hydrophobic C-terminal as the common structure. Therefore, the target molecule of the YO compounds may be located not on the cell surface but rather inside the cells.  相似文献   
998.
We have recently shown that cyclic AMP (cAMP) increases claudin-5 immunoreactivity along cell boundaries and could promote phosphorylation of claudin-5 on threonine residues in porcine blood-brain barrier (BBB) endothelial cells via a protein kinase A (PKA)-dependent pathway (Exp. Cell Res. 290 [2003] 275). Along this line, we identified a putative phosphorylation site for PKA at Thr(207) in the intracytoplasmic carboxyl terminal domain of claudin-5. To clarify the biological significance of this site in regulation of endothelial barrier functions, we established rat lung endothelial (RLE) cells expressing doxycycline (Dox)-inducible wild-type claudin-5 and a mutant with a substitution of Ala for Thr(207) (CL5T207A). We show that induction of wild-type claudin-5 is sufficient to reconstitute the paracellular barrier against inulin (5 kDa), but not mannitol (182 Da), in leaky RLE cells. By contrast, the barrier against both molecules was induced in the mutant cells. We also demonstrate that, upon cAMP treatment, Thr(207) of claudin-5 is involved in enhancement of claudin-5 immunoreactive signals along cell borders, rapid reduction in transendothelial electrical resistance (TER), and loosening of the claudin-5-based endothelial barrier against mannitol, but not inulin. cAMP decreased the claudin-5-based endothelial barrier, strongly suggesting that other tight-junction molecule(s) are required to elevate endothelial barrier functions in response to cAMP.  相似文献   
999.
To investigate the molecular phylogeny and evolution of the family Canidae, nucleotide sequences of the zinc-finger-protein gene on the Y chromosome (ZFY, 924-1146 bp) and its homologous gene on the X chromosome (ZFX, 834-839 bp) for twelve canid species were determined. The phylogenetic relationships among species reconstructed by the paternal ZFY sequences closely agreed with those by mtDNA and autosomal DNA trees in previous reports, and strongly supported the phylogenetic affinity between the wolf-like canids clade and the South American canids clade. However, the branching order of some species differed between phylogenies of ZFY and ZFX genes: Cuon alpinus and Canis mesomelas were included in the wolf-like canid clades in the ZFY tree, whereas both species were clustered in a group of Chrysocyon brachyurus and Speothos venaticus in the ZFX tree. The topology difference between ZFY and ZFX trees may have resulted from the two-times higher substitution rate of the former than the latter, which was clarified in the present study. In addition, two types of transposable element sequence (SINE-I and SINE-II) were found to occur in the ZFY final intron of the twelve canid species examined. Because the SINE-I sequences were shared by all the species, they may have been inserted into the ZFY of the common ancestor before species radiation in Canidae. By contract, SINE-II found in only Canis aureus could have been inserted into ZFY independently after the speciation. The molecular diversity of SINE sequences of Canidae reflects evolutionary history of the species radiation.  相似文献   
1000.
Quantitative structure-activity relationships (QSARs) within a series of cytochrome P450 2C9 (CYP2C9) and cytochrome P450 2C19 (CYP2C19) inhibitors are reported. In particular, it is noted that compound lipophilicity, in the form of log P values (where P is the octanol/water partition coefficient), is an important factor in explaining the variation in inhibitory potency within these series of compounds, many of which also act as substrates for the respective enzymes. In addition, there is a role for hydrogen bonding and π-π stacking interactions within the P450 active site which represent secondary factors in the binding processes of these compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号