首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2845篇
  免费   159篇
  2023年   5篇
  2022年   13篇
  2021年   30篇
  2020年   19篇
  2019年   36篇
  2018年   46篇
  2017年   48篇
  2016年   67篇
  2015年   102篇
  2014年   136篇
  2013年   158篇
  2012年   201篇
  2011年   201篇
  2010年   145篇
  2009年   138篇
  2008年   227篇
  2007年   189篇
  2006年   201篇
  2005年   199篇
  2004年   201篇
  2003年   152篇
  2002年   176篇
  2001年   19篇
  2000年   16篇
  1999年   25篇
  1998年   36篇
  1997年   27篇
  1996年   27篇
  1995年   12篇
  1994年   16篇
  1993年   17篇
  1992年   12篇
  1991年   8篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   8篇
  1984年   14篇
  1983年   15篇
  1982年   7篇
  1981年   3篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   3篇
  1971年   2篇
  1969年   5篇
  1966年   1篇
排序方式: 共有3004条查询结果,搜索用时 15 毫秒
101.
Some urodele amphibians possess the capacity to regenerate their body parts, including the limbs and the lens of the eye. The molecular pathway(s) involved in urodele regeneration are largely unknown. We have previously suggested that complement may participate in limb regeneration in axolotls. To further define its role in the regenerative process, we have examined the pattern of distribution and spatiotemporal expression of two key components, C3 and C5, during limb and lens regeneration in the newt Notophthalmus viridescens. First, we have cloned newt cDNAs encoding C3 and C5 and have generated Abs specifically recognizing these molecules. Using these newt-specific probes, we have found by in situ hybridization and immunohistochemical analysis that these molecules are expressed during both limb and lens regeneration, but not in the normal limb and lens. The C3 and C5 proteins were expressed in a complementary fashion during limb regeneration, with C3 being expressed mainly in the blastema and C5 exclusively in the wound epithelium. Similarly, during the process of lens regeneration, C3 was detected in the iris and cornea, while C5 was present in the regenerating lens vesicle as well as the cornea. The distinct expression profile of complement proteins in regenerative tissues of the urodele lens and limb supports a nonimmunologic function of complement in tissue regeneration and constitutes the first systematic effort to dissect its involvement in regenerative processes of lower vertebrate species.  相似文献   
102.
Rho-kinase and myosin phosphatase are implicated in the phosphorylation-state of myosin light chain downstream of Rho, which is thought to induce smooth muscle contraction and stress fibre formation in non-muscle cells. Here, we found that microtubule-associated proteins, Tau and MAP2, interacted with the myosin-binding subunit (MBS) of myosin phosphatase, and were the possible substrates of both Rho-kinase and myosin phosphatase. We determined the phosphorylation sites of Tau (Thr245, Thr377, Ser409) and MAP2 (Ser1796) by Rho-kinase. We also found that Rho-kinase phosphorylated Tau at Ser262 to some extent. Phosphorylation by Rho-kinase decreased the activity of Tau to promote microtubule assembly in vitro. Substitutions of Ala for Ser/Thr at the phosphorylation sites of Tau (Tau-AAA) did not affect the activity to promote microtubule assembly, while substitutions of Asp for Ser/Thr (Tau-DDD), which are expected to mimic the phosphorylation-state of Tau, slightly reduced the activity. When Tau, or mutated forms of Tau, were expressed in PC12 cells, followed by treatment with cytochalasin D, they promoted extension of the cell process in a cytochalasin-dependent manner. However, Tau-DDD showed the weaker activity in this capacity than wild-type Tau or Tau-AAA. These results suggest that the phosphorylation-state of these residues of Tau affects its activity both in vitro and in vivo. Thus, it is likely that the Rho-kinase/MBS pathway regulates not only the actin-myosin system but also microtubule dynamics.  相似文献   
103.
104.
105.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   
106.
107.
108.
109.
The acute lymphoblastic leukemia cell line CCRF-CEM is sensitive to Ara-C and undergoes apoptosis. In contrast, the chronic myelogenous leukemia (CML) cell line K562 is highly resistant to Ara-C, which causes the cells to differentiate into erythrocytes before undergoing apoptosis. We used cDNA microarrays to monitor the alterations in gene expression in these two cell lines under conditions leading to apoptosis or differentiation. Ara-C-treated CCRF-CEM cells were characterized by a cluster of down-regulated chaperone genes, whereas Ara-C-treated K562 cells were characterized by a cluster of up-regulated hemoglobin genes. In K562 cells, Ara-C treatment induced significant down-regulation of the asparagine synthetase gene, which is involved in resistance to L-asparaginase. Sequential treatment with Ara-C and L-asparaginase had a synergistic effect on the inhibition of K562 cell growth, and combination therapy with these two anticancer agents may prove effective in the treatment of CML, which cannot be cured by either drug alone.  相似文献   
110.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号