首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7696篇
  免费   480篇
  国内免费   3篇
  8179篇
  2022年   43篇
  2021年   64篇
  2020年   38篇
  2019年   62篇
  2018年   96篇
  2017年   90篇
  2016年   134篇
  2015年   209篇
  2014年   253篇
  2013年   395篇
  2012年   424篇
  2011年   418篇
  2010年   277篇
  2009年   277篇
  2008年   445篇
  2007年   403篇
  2006年   406篇
  2005年   428篇
  2004年   399篇
  2003年   392篇
  2002年   386篇
  2001年   215篇
  2000年   231篇
  1999年   198篇
  1998年   104篇
  1997年   86篇
  1996年   75篇
  1995年   64篇
  1994年   64篇
  1993年   68篇
  1992年   129篇
  1991年   124篇
  1990年   112篇
  1989年   112篇
  1988年   104篇
  1987年   77篇
  1986年   80篇
  1985年   58篇
  1984年   79篇
  1983年   65篇
  1982年   49篇
  1981年   36篇
  1980年   25篇
  1979年   48篇
  1978年   36篇
  1977年   34篇
  1976年   26篇
  1974年   34篇
  1971年   27篇
  1970年   29篇
排序方式: 共有8179条查询结果,搜索用时 0 毫秒
341.
Nin1p, a component of the 26S proteasome of Saccharomyces cerevisiae, is required for activation of Cdc28p kinase at the G1-S-phase and G2-M boundaries. By exploiting the temperature-sensitive phenotype of the nin1-1 mutant, we have screened for genes encoding proteins with related functions to Nin1p and have cloned and characterized two new multicopy suppressors, SUN1 and SUN2, of the nin1-1 mutation. SUN1 can suppress a null nin1 mutation, whereas SUN2, an essential gene, does not. Sun1p is a 268-amino acid protein which shows strong similarity to MBP1 of Arabidopsis thaliana, a homologue of the S5a subunit of the human 26S proteasome. Sun1p binds ubiquitin-lysozyme conjugates as do S5a and MBP1. Sun2p (523 amino acids) was found to be homologous to the p58 subunit of the human 26S proteasome. cDNA encoding the p58 component was cloned. Furthermore, expression of a derivative of p58 from which the N-terminal 150 amino acids had been removed restored the function of a null allele of SUN2. During glycerol density gradient centrifugation, both Sun1p and Sun2p comigrated with the known proteasome components. These results, as well as other structural and functional studies, indicate that both Sun1p and Sun2p are components of the regulatory module of the yeast 26S proteasome.  相似文献   
342.
In avian species, the developmental fate of different-sex germ cells in the gonads is unclear. The present study attempted to confirm whether genetically female germ cells can differentiate into spermatozoa in male gonads using male germline chimeric chickens produced by the transfer of primordial germ cells (PGC), and employing molecular biological methods. As a result of Southern hybridization, specific sequences of the W chromosome (the female specific sex chromosome in birds) were detected in the genomic DNA extracted from one out of four male germline chimeric chickens. When two-color in situ hybridization was conducted on the spermatozoa of this germline chimera, 0.33% (average) of the nuclei of each semen sample showed the fluorescent signal indicating the presence of the W chromosome. The present study shows that female PGC can differentiate into spermatozoa in male gonads in the chicken. However, the ratio of produced W chromosome-bearing (W-bearing) spermatozoa fell substantially below expectations. It is therefore concluded that most of the W-bearing PGC could not differentiate into spermatozoa because of restricted spermatogenesis.  相似文献   
343.
Vpr, the viral protein R of human immunodeficiency virus type 1, induces G(2) cell cycle arrest and apoptosis in mammalian cells via ATR (for "ataxia-telangiectasia-mediated and Rad3-related") checkpoint activation. The expression of Vpr induces the formation of the gamma-histone 2A variant X (H2AX) and breast cancer susceptibility protein 1 (BRCA1) nuclear foci, and a C-terminal domain is required for Vpr-induced ATR activation and its nuclear localization. However, the cellular target of Vpr, as well as the mechanism of G(2) checkpoint activation, was unknown. Here we report that Vpr induces checkpoint activation and G(2) arrest by binding to the CUS1 domain of SAP145 and interfering with the functions of the SAP145 and SAP49 proteins, two subunits of the multimeric splicing factor 3b (SF3b). Vpr interacts with and colocalizes with SAP145 through its C-terminal domain in a speckled distribution. The depletion of either SAP145 or SAP49 leads to checkpoint-mediated G(2) cell cycle arrest through the induction of nuclear foci containing gamma-H2AX and BRCA1. In addition, the expression of Vpr excludes SAP49 from the nuclear speckles and inhibits the formation of the SAP145-SAP49 complex. To conclude, these results point out the unexpected roles of the SAP145-SAP49 splicing factors in cell cycle progression and suggest that cellular expression of Vpr induces checkpoint activation and G(2) arrest by interfering with the function of SAP145-SAP49 complex in host cells.  相似文献   
344.
Homeotic transformation of stamens into pistil-like structures (called pistillody) has been reported in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum) having the cytoplasm of a wild relative species, Aegilops crassa. Our previous studies indicated that pistillody is caused by alterations of the class B MADS-box gene expression pattern associated with mitochondrial gene(s) in the Ae. crassa cytoplasm. To elucidate the nuclear gene involved in the cross-talk between pistillody-related mitochondrial gene(s) and nuclear homeotic genes, we performed cDNA subtraction analysis using cDNAs derived from young spikes of a pistillody line and a normal line. As a result, we identified a protein kinase gene, WPPK1 (wheat pistillody-related protein kinase 1), which is upregulated in the young spikes of the pistillody line. RT-PCR analysis indicated that WPPK1 is strongly expressed in pistils and pistil-like stamens in the pistillody line, suggesting that it is involved in the formation of pistil-like stamens as well as pistils. The full-length cDNA sequence for WPPK1 showed high similarity with a flowering plant PVPK-1 protein kinase, and phylogenetic analysis indicated that it is a member of AGC group protein kinases. Furthermore, a phosphorylation assay indicated that it has protein kinase activity. In situ hybridization analysis revealed that WPPK1 is expressed in developing pistils and pistil-like stamens as well as in their primordia. These indicate that in the alloplasmic line, WPPK1 plays a role in formation and development of pistil-like stamens.  相似文献   
345.
346.
The dinoflagellate Alexandrium fundyense is the major causative organism of paralytic shellfish poisoning in the Gulf of Maine. While laboratory studies have shown that A. fundyense population dynamics can be affected dramatically by co-occurring bacteria, little is known about these interactions in nature. Because A. fundyense is typically a minor Gulf of Maine phytoplankton community member, analyses of the bulk community cannot be used to address bacterium-A. fundyense associations. Therefore, an immunomagnetic bead method was used to selectively capture A. fundyense cells, and the bacteria attached to them, from complex natural samples. Bulk particle-associated and free-living bacterial communities were collected simultaneously. DNA was extracted from all sample types and subjected to 16S rRNA gene fragment amplification, denaturing gradient gel electrophoresis (DGGE) and sequence analysis. Ordination analysis of DGGE profiles confirmed that A. fundyense-associated bacteria community profiles were distinct from bulk bacterial community profiles, indicating selection of specific phylotypes in the A. fundyense phycosphere. Phylogenetic analyses confirmed that Alexandrium-associates were distinct from bulk particle-associated bacteria and that they included a greater prevalence and broader diversity of Gammaproteobacteria than previously thought to be associated with toxic algae. Phylogenetic groups known to be associated with dinoflagellates were also found, including members of the families Alteromonadaceae, Pseudoalteromonadaceae, Rhodobacteraceae and Flavobacteraceae.  相似文献   
347.
Ligand-induced down-regulation controls the signaling potency of the epidermal growth factor receptor (EGFR/ErbB1). Overexpression studies have identified Cbl-mediated ubiquitinylation of EGFR as a mechanism of ligand-induced EGFR down-regulation. However, the role of endogenous Cbl in EGFR down-regulation and the precise step in the endocytic pathway regulated by Cbl remain unclear. Using Cbl-/- mouse embryonic fibroblast cell lines, we demonstrate that endogenous Cbl is essential for ligand-induced ubiquitinylation and efficient degradation of EGFR. Further analyses using Chinese hamster ovary cells with a temperature-sensitive defect in ubiquitinylation confirm a crucial role of the ubiquitin machinery in Cbl-mediated EGFR degradation. However, internalization into early endosomes did not require Cbl function or an intact ubiquitin pathway. Confocal immunolocalization studies indicated that Cbl-dependent ubiquitinylation plays a critical role at the early endosome to late endosome/lysosome sorting step of EGFR down-regulation. These findings establish Cbl as the major endogenous ubiquitin ligase responsible for EGFR degradation, and show that the critical role of Cbl-mediated ubiquitinylation is at the level of endosomal sorting, rather than at the level of internalization.  相似文献   
348.
Phytochelatins (PCs), non-protein peptides with the general structure [(γ-Glu-Cys)n-Gly (n≥ 2)], are involved in the detoxification of toxic heavy metals mainly in higher plants. The synthesis of the peptides is mediated by phytochelatin synthase (PCS), which is activated by a range of heavy metals. CmPCS, a PCS-like gene found in the genomic DNA of the primitive red alga Cyanidioschyzon merolae, was isolated and a recombinant protein (rCmPCS) fused with a hexahistidine tag at the N-terminus of CmPCS was produced. The finding that this protein mediated PC synthesis from glutathione in a metal-dependent way clearly establishes that rCmPCS is functional. The maximum activity was attained at a reaction temperature of 50 °C, considerably higher than the temperature required for the maximal activity of PCS isolated from the higher plant Silene cucubalus, probably due to the alga being a thermophile. CmPCS showed optimal pH in a slightly higher region than higher plant PCSs, probably due to the less effective charge relay network in the catalytic triad. In addition, the pattern of enzyme activation by metal ions was specific to rCmPCS, with Ag+, Cu2+, and Hg2+ showing only limited activation. In contrast to other eukaryotic PCSs, CmPCS has an extra domain in the N-terminal region from residues 1 to 109, and contains fewer cysteine residues in the C-terminal domain. These differences may be responsible for the metal specificity of the activation of CmPCS. Although the enzyme preparation lost PCS activity progressively when stored at 4 °C, the inclusion of Cd2+ in the preparation effectively prevented the reduction of activity. Furthermore, Cd2+ effectively restored the activity of the inactivated enzyme. These results indicate that Cd2+ ions bind the enzyme to maintain the structural integrity of the peptides.  相似文献   
349.
350.
In summer and winter, young, sedentary male (N = 5) and female (N = 7) subjects were exposed to heat in a climate chamber in which ambient temperature (Ta) was raised continuously from 30 to 42°C at a rate of 0.1°C min−1 at a relative humidity of 40%. Sweat rates (SR) were measured continuously on forearm, chest and forehead together with tympanic temperature (Tty), mean skin temperature ( [`T] s ) \left( {\overline {\hbox{T}} {\hbox{s}}} \right) and mean body temperature ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) . The rate of sweat expulsions (Fsw) was obtained as an indicator of central sudomotor activity. Tty and ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) were significantly lower during summer compared with winter in males; SR was not significantly different between summer and winter in males, but was significantly higher during summer in females; SR during winter was higher in males compared with females. The regression line relating Fsw to ( [`T] b ) \left( {\overline {\hbox{T}} {\hbox{b}}} \right) shifted significantly from winter to summer in males and females, but the magnitude of the shift was not significantly different between the two subject groups. The regression line relating SR to Fsw was steepened significantly from winter to summer in males and females, and the change in the slope was significantly greater in females than in males. Females showed a lower slope in winter and a similar slope in summer compared to males. It was concluded that sweating function was improved during summer mediated by central sudomotor and sweat gland mechanisms in males and females, and, although the change of sweat gland function from winter to summer was greater in females as compared with males, the level of increased sweat gland function during summer was similar between the two subject groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号