首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3290篇
  免费   200篇
  3490篇
  2023年   8篇
  2022年   19篇
  2021年   34篇
  2020年   20篇
  2019年   37篇
  2018年   52篇
  2017年   55篇
  2016年   79篇
  2015年   112篇
  2014年   144篇
  2013年   181篇
  2012年   220篇
  2011年   217篇
  2010年   155篇
  2009年   160篇
  2008年   251篇
  2007年   222篇
  2006年   231篇
  2005年   224篇
  2004年   231篇
  2003年   169篇
  2002年   204篇
  2001年   32篇
  2000年   32篇
  1999年   35篇
  1998年   37篇
  1997年   29篇
  1996年   34篇
  1995年   19篇
  1994年   25篇
  1993年   19篇
  1992年   17篇
  1991年   18篇
  1990年   21篇
  1989年   15篇
  1988年   9篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   16篇
  1983年   17篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1974年   3篇
  1970年   3篇
排序方式: 共有3490条查询结果,搜索用时 15 毫秒
151.
The oncoprotein MDM2 binds to tumor suppressor protein p53 and inhibits its anticancer activity, which leads to promotion of tumor cell growth and tumor survival. Abrogation of the p53:MDM2 interaction reportedly results in reactivation of the p53 pathway and inhibition of tumor cell proliferation. We recently performed rigorous selection of MDM2-binding peptides by means of mRNA display and identified an optimal 12-mer peptide (PRFWEYWLRLME), named MDM2 Inhibitory Peptide (MIP), which shows higher affinity for MDM2 (and also its homolog, MDMX) and higher tumor cell proliferation suppression activity than known peptides. Here we determined the NMR solution structure of a MIP-MDM2 fusion protein to elucidate the structural basis of the tight binding of MIP to MDM2. A region spanning from Phe3 to Met11 of MIP forms a single α-helix, which is longer than those of the other MDM2-binding peptides. MIP shares a conserved Phe3-Trp7-Leu10 triad, whose side chains are oriented towards and fit into the hydrophobic pockets of MDM2. Additionally, hydrophobic surface patches that surround the hydrophobic pockets of MDM2 are covered by solvent-exposed MIP residues, Trp4, Tyr6, and Met11. Their hydrophobic interactions extend the interface of the two molecules and contribute to the strong binding. The potential MDM2 inhibition activity observed for MIP turned out to originate from its enlarged binding interface. The structural information obtained in the present study provides a road map for the rational design of strong inhibitors of MDM2:p53 binding.  相似文献   
152.
Indigenous oral bacteria in the tongue coating such as Veillonella have been identified as the main producers of hydrogen sulfide (H2S), one of the major components of oral malodor. However, there is little information on the physiological properties of H2S production by oral Veillonella such as metabolic activity and oral environmental factors which may affect H2S production. Thus, in the present study, the H2S-producing activity of growing cells, resting cells, and cell extracts of oral Veillonella species and the effects of oral environmental factors, including pH and lactate, were investigated. Type strains of Veillonella atypica, Veillonella dispar, and Veillonella parvula were used. These Veillonella species produced H2S during growth in the presence of l-cysteine. Resting cells of these bacteria produced H2S from l-cysteine, and the cell extracts showed enzymatic activity to convert l-cysteine to H2S. H2S production by resting cells was higher at pH 6 to 7 and lower at pH 5. The presence of lactate markedly increased H2S production by resting cells (4.5- to 23.7-fold), while lactate had no effect on enzymatic activity in cell extracts. In addition to H2S, ammonia was produced in cell extracts of all the strains, indicating that H2S was produced by the catalysis of cystathionine γ-lyase (EC 4.4.1.1). Serine was also produced in cell extracts of V. atypica and V. parvula, suggesting the involvement of cystathionine β-synthase lyase (EC 4.2.1.22) in these strains. This study indicates that Veillonella produce H2S from l-cysteine and that their H2S production can be regulated by oral environmental factors, namely, pH and lactate.  相似文献   
153.
We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14) in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense–related PR-4 and accumulation of jasmonic acid (JA) and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.  相似文献   
154.
H Aiba  T Nakamura  H Mitani    H Mori 《The EMBO journal》1985,4(12):3329-3332
Mutations which permit cAMP binding protein (CRP) to act in the absence of cAMP have been isolated by in vitro mutagenesis of a plasmid containing the cloned crp gene. Adenylate cyclase deficient cells harbouring the mutant (crp*) plasmids exhibited a variety of fermentation profiles on MacConkey indicator plates containing various sugars. beta-galactosidase synthesis in cells carrying the crp* plasmids was activated most by the addition of cGMP as well as cAMP. The sites of mutations which are responsible for the cAMP independent phenotype were determined by in vitro recombination and DNA sequencing. The amino acid substitutions in the mutant proteins were found in two specific regions of the crp gene encoding residues 53-62 and 141-148 of CRP polypeptide. The first region may participate in cAMP binding, while the second appears to be the inter-domain region of the N-terminal cAMP-binding and C-terminal DNA-binding domains.  相似文献   
155.
We have previously shown that ristocetin, an activator of glycoprotein Ib/IX/V, induces release of soluble CD40 (sCD40) ligand via thromboxane (TX) A(2) production from human platelets. In the present study, we investigated the effect of antithrombin-III (AT-III), an anticoagulant, on the ristocetin-induced glycoprotein Ib/IX/V activation in human platelets. AT-III inhibited ristocetin-stimulated platelet aggregation. The ristocetin-induced production of 11-dehydro-TXB(2), a stable metabolite of TXA(2), and the release of sCD40 ligand were suppressed by AT-III. AT-III also reduced the ristocetin-stimulated secretion of platelet-derived growth factor (PDGF)-AB. AT-III failed to affect U46619-, a TXA(2) receptor agonist, induced levels of p38 mitogen-activated protein kinase phosphorylation or sCD40 ligand release. AT-III reduced the binding of SZ2, a monoclonal antibody to the sulfated sequence in the α-chain of glycoprotein Ib, to the ristocetin-stimulated platelets. These results strongly suggest that AT-III reduced ristocetin-stimulated release of sCD40 ligand due to inhibiting TXA(2) production in human platelets.  相似文献   
156.
A peptide β2-m21?31, which is a fragment from residue 21 to residue 31 of β2-microgloblin, is experimentally known to self-assemble and form amyloid fibrils. In order to understand the mechanism of amyloid fibril formations, we applied the replica-exchange molecular dynamics method to the system consisting of three fragments of β2-m21?31. From the analyses on the temperature dependence, we found that there is a clear phase transition temperature in which the peptides aggregate with each other. Moreover, we found by the free energy analyses that there are two major stable states: One of them is like amyloid fibrils and the other is amorphous aggregates.  相似文献   
157.
Selective autophagy of bacterial pathogens represents a host innate immune mechanism. Selective autophagy has been characterized on the basis of distinct cargo receptors but the mechanisms by which different cargo receptors are targeted for autophagic degradation remain unclear. In this study we identified a highly conserved Tectonin domain-containing protein, Tecpr1, as an Atg5 binding partner that colocalized with Atg5 at Shigella-containing phagophores. Tecpr1 activity is necessary for efficient autophagic targeting of bacteria, but has no effect on rapamycin- or starvation-induced canonical autophagy. Tecpr1 interacts with WIPI-2, a yeast Atg18 homolog and PI(3)P-interacting protein required for phagophore formation, and they colocalize to phagophores. Although Tecpr1-deficient mice appear normal, Tecpr1-deficient MEFs were defective for selective autophagy and supported increased intracellular multiplication of Shigella. Further, depolarized mitochondria and misfolded protein aggregates accumulated in the Tecpr1-knockout MEFs. Thus, we identify a Tecpr1-dependent pathway as important in targeting bacterial pathogens for selective autophagy.  相似文献   
158.
The balance between androgens and estrogens is very important in the development of the prostate, and even small changes in estrogen levels, including those of estrogen-mimicking chemicals, can lead to serious changes. Bisphenol A (BPA), an endocrine-disrupting chemical, is a well-known, ubiquitous, estrogenic chemical. To investigate the effects of fetal exposure to low-dose BPA on the development of the prostate, we examined alterations of the in situ sex steroid hormonal environment in the mouse urogenital sinus (UGS). In the BPA-treated UGS, estradiol (E(2)) levels and CYP19A1 (cytochrome P450 aromatase) activity were significantly increased compared with those of the untreated and diethylstilbestrol (DES)-treated UGS. The mRNAs of steroidogenic enzymes, Cyp19a1 and Cyp11a1, and the sex-determining gene, Nr5a1, were up-regulated specifically in the BPA-treated group. The up-regulation of mRNAs was observed in the mesenchymal component of the UGS as well as in the cerebellum, heart, kidney, and ovary but not in the testis. The number of aromatase-expressing mesenchymal cells in the BPA-treated UGS was approximately twice that in the untreated and DES-treated UGS. The up-regulation of Esrrg mRNA was observed in organs for which mRNAs of steroidogenic enzymes were also up-regulated. We demonstrate here that fetal exposure to low-dose BPA has the unique action of increasing in situ E(2) levels and CYP19A1 (aromatase) activity in the mouse UGS. Our data suggest that BPA might interact with in situ steroidogenesis by altering tissue components, such as the accumulation of aromatase-expressing mesenchymal cells, in particular organs.  相似文献   
159.
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, but its autoimmune mechanisms are not clearly understood. Recently, anti-citrullinated peptide antibodies have been specifically observed in sera of RA patients. Furthermore, we identified RA-susceptible variant in a gene encoding citrullinating enzyme, peptidylarginine deiminase type 4 (PADI4). Therefore, we hypothesized that proteins which are modified in RA synovium by PADI4 act as autoantigens. Subsequently, we obtained human collagen type I (huCI) as one of the autoantigens using a RA synoviocyte cDNA library by immunoscreening. We also investigated that the levels of anti-citrullinated huCI were significantly higher in RA patient sera than in normal control sera with high specificity (99%) and positively correlated with the levels of anti-cyclic citrullinated peptide (anti-CCP) antibodies. We concluded that huCI is a novel substrate protein of PADIs and that citrullinated huCI is a candidate autoantigen of RA.  相似文献   
160.
Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号