首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3949篇
  免费   224篇
  2023年   9篇
  2022年   19篇
  2021年   39篇
  2020年   29篇
  2019年   36篇
  2018年   57篇
  2017年   59篇
  2016年   86篇
  2015年   120篇
  2014年   159篇
  2013年   213篇
  2012年   242篇
  2011年   247篇
  2010年   168篇
  2009年   161篇
  2008年   273篇
  2007年   243篇
  2006年   251篇
  2005年   246篇
  2004年   261篇
  2003年   196篇
  2002年   229篇
  2001年   69篇
  2000年   67篇
  1999年   61篇
  1998年   45篇
  1997年   35篇
  1996年   39篇
  1995年   23篇
  1994年   23篇
  1993年   24篇
  1992年   37篇
  1991年   41篇
  1990年   30篇
  1989年   34篇
  1988年   32篇
  1987年   30篇
  1986年   24篇
  1985年   31篇
  1984年   28篇
  1983年   23篇
  1982年   16篇
  1981年   7篇
  1980年   17篇
  1979年   22篇
  1978年   12篇
  1977年   10篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
排序方式: 共有4173条查询结果,搜索用时 15 毫秒
81.

Introduction

Patients with schizophrenia elicit cognitive decline from the early phase of the illness. Mismatch negativity (MMN) has been shown to be associated with cognitive function. We investigated the current source density of duration mismatch negativity (dMMN), by using low-resolution brain electromagnetic tomography (LORETA), and neuropsychological performance in subjects with early schizophrenia.

Methods

Data were obtained from 20 patients meeting DSM-IV criteria for schizophrenia or schizophreniform disorder, and 20 healthy control (HC) subjects. An auditory odd-ball paradigm was used to measure dMMN. Neuropsychological performance was evaluated by the brief assessment of cognition in schizophrenia Japanese version (BACS-J).

Results

Patients showed smaller dMMN amplitudes than those in the HC subjects. LORETA current density for dMMN was significantly lower in patients compared to HC subjects, especially in the temporal lobes. dMMN current density in the frontal lobe was positively correlated with working memory performance in patients.

Conclusions

This is the first study to identify brain regions showing smaller dMMN current density in early schizophrenia. Further, poor working memory was associated with decreased dMMN current density in patients. These results are likely to help understand the neural basis for cognitive impairment of schizophrenia.  相似文献   
82.
Cetuximab is a chimeric mouse–human monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). However, EGFR expression determined by immunohistochemistry does not predict clinical outcomes of colorectal cancer (CRC) patients treated with cetuximab. Therefore, we evaluated the correlation between EGFR levels detected by cetuximab and drug sensitivities of CRC cell lines (Caco-2, WiDR, SW480, and HCT116) and the A431 epidermoid carcinoma cell line. We used flow cytometry (FCM) to detect EGFR-binding of biotinylated cetuximab on the cell surface. Subcloned cell lines showing the highest and lowest EGFR expression levels were chosen for further study. Cytotoxic assays were used to determine differential responses to cetuximab. Xenograft models treated with cetuximab intraperitoneally to assess sensitivity to cetuximab. Strong responses to cetuximab were specifically exhibited by subcloned cells with high EGFR expression levels. Furthermore, cetuximab inhibited the growth of tumors in xenograft models with high or low EGFR expression levels by 35% and 10%–20%, respectively. We conclude that detection of EGFR expression by cetuximab promises to provide a novel, sensitive, and specific method for predicting the sensitivity of CRC to cetuximab.  相似文献   
83.
An endangered tetraploid spined loach species, Cobitis takenoi (Cypriniformes: Cobitidae; hereafter called Tango loach) is known to inhabit only a single river in Kyoto Prefecture, Japan. Since Tango loach was discovered recently, in 2010, and only described in 2016, its morphology, ecology, and genetics are not well studied. Another tetraploid spined loach species Cobitis sp. BIWAE type A (hereafter, called Ohshima loach) inhabits the same river. The two loaches are reported as morphologically distinguishable from each other. Although the habitats of the two species in the river are segregated (Ohshima loach and Tango loach inhabit the upper and lower reaches, respectively), they overlap to a small degree in the boundary area. Recently, some individuals with morphological characteristics that are intermediate between the two species were found in the overlap zone. It was suspected that hybrids between the two species were produced since breeding seasons of the two species overlapped. To investigate whether the two species produce hybrids, we performed mitochondrial and nuclear DNA analyses on the unidentifiable individuals. Eight individuals unidentifiable to the species level collected in the river between 2017 and 2018 were examined and compared with the Tango and Ohshima loach species. Using mitochondrial DNA (mtDNA) cytochrome b analysis, we found that six individuals had mtDNA types identical to Tango loach and two individuals had mtDNA types identical to Ohshima loach. Furthermore, sequencing analysis of nuclear recombination activating gene 1 (RAG-1) revealed that each species had species-specific alleles. The phylogenetic analysis indicated that alleles in Tango loach were divided into two clusters and those from Ohshima loach formed a single cluster. There were no discrepancies in the combination between mtDNA and nuclear DNA species types within each specimen. DNA fingerprinting analysis (AFLP) showed that the species-unidentifiable individuals exhibited distinctly segregated genetic groups corresponding with Tango and Ohshima loaches. In summary, no hybrids were detected from among any unidentifiable individual examined in this study. New conventional genetic method for discriminating the two sympatric loach species developed here can be effective tool for the conservation of the Tango loach since there was no strict diagnostic morphological character between them.  相似文献   
84.
Type I IFNs are a range of host-derived molecules with adjuvant potential; they have been used for many years in the treatment of cancer and viral hepatitis. Therefore, the safety of IFNs for human use has been established. In this study, we evaluated the mucosal adjuvanticity of IFN-β administered intranasally to mice with diphtheria toxoid, and suggested a method to improve its adjuvanticity. When IFN-β alone was used as a mucosal adjuvant, no clear results were obtained. However, simultaneous administration of IFN-β and chitosan resulted in an enhancement of the specific serum immunoglobulin G (IgG) and IgA antibody responses, the mucosal IgA antibody response, and antitoxin titers. Furthermore, the intranasal administration of IFN-α alone resulted in a greater increase in antibody titer than IFN-β, and a synergistic effect with chitosan was also observed. These findings suggest that intranasal administration of chitosan and Type I IFNs may display an effective synergistic mucosal adjuvant activity.  相似文献   
85.
Missense mutations of the RET gene have been identified in both multiple endocrine neoplasia (MEN) type 2A/B and Hirschsprung disease (HSCR: congenital absence of the enteric nervous system, ENS). Current consensus holds that MEN2A/B and HSCR are caused by activating and inactivating RET mutations, respectively. However, the biological significance of RET missense mutations in vivo has not been fully elucidated. In the present study, we introduced one MEN2B-associated (M918T) and two HSCR-associated (N394K and Y791F) RET missense mutations into the corresponding regions of the mouse Ret gene by genome editing (RetM919T, RetN396K and RetY792F) and performed histological examinations of Ret-expressing tissues to understand the pathogenetic impact of each mutant in vivo. RetM919T/+ mice displayed MEN2B-related phenotypes, including C-cell hyperplasia and abnormal enlargement of the primary sympathetic ganglia. Similar sympathetic phenotype was observed in RetM919T/- mice, demonstrating a strong pathogenetic effect of the Ret M918T by a single-allele expression. In contrast, no abnormality was found in the ENS of mice harboring the Ret N394K or Y791F mutation. Most surprisingly, single-allele expression of RET N394K or Y791F was sufficient for normal ENS development, indicating that these RET mutants exert largely physiological function in vivo. This study reveals contrasting pathogenetic effects between MEN2B- and HSCR-associated RET missense mutations, and suggests that some of HSCR-associated RET missense mutations are by themselves neither inactivating nor pathogenetic and require involvement of other gene mutations for disease expressivity.  相似文献   
86.

Background

Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions.

Scope of review

Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo.

Major conclusions

Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes.

General significance

Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders.  相似文献   
87.

Background

Previously, we identified two missense mutations in the chondroitin N-acetylgalactosaminyltransferase-1 gene in patients with neuropathy. These mutations are associated with a profound decrease in chondroitin N-acetylgalactosaminyltransferase-1 enzyme activity. Here, we describe a patient with neuropathy who is heterozygous for a chondroitin synthase-1 mutation. Chondroitin synthase-1 has two glycosyltransferase activities: it acts as a GlcUA and a GalNAc transferase and is responsible for adding repeated disaccharide units to growing chondroitin sulfate chains.

Methods

Recombinant wild-type chondroitin synthase-1 enzyme and the F362S mutant were expressed. These enzymes and cells expressing them were then characterized.

Results

The mutant chondroitin synthase-1 protein retained approximately 50% of each glycosyltransferase activity relative to the wild-type chondroitin synthase-1 protein. Furthermore, unlike chondroitin polymerase comprised of wild-type chondroitin synthase-1 protein, the non-reducing terminal 4-O-sulfation of GalNAc residues synthesized by chondroitin N-acetylgalactosaminyltransferase-1 did not facilitate the elongation of chondroitin sulfate chains when chondroitin polymerase that consists of the mutant chondroitin synthase-1 protein was used as the enzyme source.

Conclusions

The chondroitin synthase-1 F362S mutation in a patient with neuropathy resulted in a decrease in chondroitin polymerization activity and the mutant protein was defective in regulating the number of chondroitin sulfate chains via chondroitin N-acetylgalactosaminyltransferase-1. Thus, the progression of peripheral neuropathies may result from defects in these regulatory systems.

General significance

The elongation of chondroitin sulfate chains may be tightly regulated by the cooperative expression of chondroitin synthase-1 and chondroitin N-acetylgalactosaminyltransferase-1 in peripheral neurons and peripheral neuropathies may result from synthesis of abnormally truncated chondroitin sulfate chains.  相似文献   
88.
Morbillivirus infection is a severe threat to marine mammals. Mass die‐offs caused by this infection have repeatedly occurred in bottlenose dolphins (Turiops truncatus) and striped dolphins (Stenella coeruleoalba), both of which belong to the family Delphinidae, but not in other cetaceans. However, it is unknown whether sensitivity to the virus varies among cetacean species. The signaling lymphocyte activation molecule (SLAM) is a receptor on host cells that allows morbillivirus invasion and propagation. Its immunoguloblin variable domain‐like (V) region provides an interface for the virus hemagglutinin (H) protein. In this study, variations in the amino acid residues of the V region of 26 cetacean species, covering almost all cetacean genera, were examined. Three‐dimensional (3D) models of them were generated in a homology model using the crystal structure of the marmoset SLAM and measles virus H protein complex as a template. The 3D models showed 32 amino acid residues on the interface that possibly bind the morbillivirus. Among the cetacean species studied, variations were found at six of the residues. Bottlenose and striped dolphins have substitutions at five positions (E68G, I74V, R90H, V126I, and Q130H) compared with those of baleen whales. Three residues (at positions 68, 90 and 130) were found to alternate electric charges, possibly causing changes in affinity for the virus. This study shows a new approach based on receptor structure for assessing potential vulnerability to viral infection. This method may be useful for assessing the risk of morbillivirus infection in wildlife.  相似文献   
89.

Background and aims

Arbuscular mycorrhizal (AM) fungi play a significant role in P nutrition of crops in agriculture, but P accumulation in the soil, e.g., application of P-fertilizer, generally reduces AM fungal colonization. The impact of long-term application of chemical fertilizer on AM fungal communities was investigated with respect to the time scale.

Methods

Soils were collected from four plots with different fertilizer management in the long-term experimental field established in 1914. Lotus japonicus was grown in the soils in a greenhouse, while Glycine max was grown in the plots in the field. DNA was extracted from their roots, and the diversity and community compositions were analyzed based on occurrence of the AM fungal phylotypes defined by sequence similarity in the LSU rDNA.

Results

The 90-year-application of N and K in the absence of P increased AM fungal diversity and resulted in formation of a distinctive fungal community compared with those in the other treatments. This effect was not cancelled by single application of P. Whereas the impact of balanced application of N, P, and K was ambiguous.

Conclusion

These observations suggest that the presence/absence of P-fertilizer has a major impact on AM fungal communities, but the action may appear only on a long time scale.  相似文献   
90.
Paramyxovirus V proteins block Toll-like receptor 7 (TLR7)- and TLR9-dependent signaling leading to alpha interferon production. Our recent study has provided evidence that interaction of the V proteins with IRF7 is important for the blockade. However, the detailed mechanisms still remain unclear. Here we reexamined the interaction of the human parainfluenza virus type 2 (HPIV2) V protein with signaling molecules involved in TLR7/9-dependent signaling. Immunoprecipitation experiments in HEK293T cells transfected with V protein and one of the signaling molecules revealed that the V protein interacted with not only IRF7 but also TRAF6, IKKα, and MyD88. Whereas overexpression of TRAF6 markedly enhanced the level of V protein associating with IRF7, IKKα, and MyD88 in HEK293T cells, the level of V protein associating with TRAF6 was little affected by overexpression of IRF7, IKKα, and MyD88. Moreover, knockdown or knockout of endogenous TRAF6 in HEK293T or mouse embryonic fibroblast cells resulted in dissociation of the V protein from IRF7, IKKα, and MyD88. These results demonstrate that binding of the V protein to IRF7, IKKα, and MyD88 is largely indirect and mediated by endogenous TRAF6. It was found that the V protein inhibited TRAF6-mediated lysine 63 (K63)-linked polyubiquitination of IRF7, which is prerequisite for IRF7 activation. Disruption of the tryptophan-rich motif of the V protein significantly affected its TRAF6-binding efficiency, which correlated well with the magnitude of inhibition of K63-linked polyubiquitination and the resultant activation of IRF7. Taken together, these results suggest that the HPIV2 V protein prevents TLR7/9-dependent interferon induction by inhibiting TRAF6-mediated K63-linked polyubiquitination of IRF7.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号