首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3001篇
  免费   166篇
  2023年   6篇
  2022年   16篇
  2021年   33篇
  2020年   18篇
  2019年   38篇
  2018年   48篇
  2017年   47篇
  2016年   73篇
  2015年   106篇
  2014年   143篇
  2013年   170篇
  2012年   215篇
  2011年   211篇
  2010年   151篇
  2009年   144篇
  2008年   239篇
  2007年   198篇
  2006年   214篇
  2005年   204篇
  2004年   205篇
  2003年   159篇
  2002年   183篇
  2001年   21篇
  2000年   18篇
  1999年   28篇
  1998年   38篇
  1997年   31篇
  1996年   30篇
  1995年   12篇
  1994年   17篇
  1993年   18篇
  1992年   12篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   17篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有3167条查询结果,搜索用时 468 毫秒
221.
Cell programs such as proliferation and differentiation involve the selective activation and repression of gene expression. The vitamin D receptor (VDR), through 1,25(OH)(2)D(3), controls the proliferation and differentiation of keratinocytes. Previously, we have identified two VDR binding coactivator complexes. In proliferating keratinocytes VDR bound preferentially to the DRIP complex, whereas in differentiated keratinocytes the SRC complex was preferred. We proposed that different coactivators are required for sequential gene regulation in the transition from proliferation to differentiation. Here we examined the roles of DRIP205 and SRC-3 in this transition. Silencing of DRIP205 and VDR caused hyperproliferation of keratinocytes, demonstrated by increased XTT and BrdU incorporation. SRC-3 silencing, on the other hand, did not have an effect on proliferation. In contrast, SRC-3 as well as DRIP205 and VDR silencing blocked keratinocyte differentiation as shown by decreased expression of keratin 1 and filaggrin. These results are consistent with the differential localization of DRIP205 and SRC-3 in skin. These results indicate that DRIP205 is required for keratinocyte proliferation. Both DRIP205 and SRC-3 are required for the keratinocyte differentiation. These results support the concept that the selective use of coactivators by VDR underlies the selective regulation of gene expression in keratinocyte proliferation and differentiation.  相似文献   
222.
Pyrrolopyrimidine, a novel scaffold, allows to adjust interactions within the S3 subsite of cathepsin K. The core intermediate 10 facilitated the P3 optimization and identified highly potent and selective cathepsin K inhibitors 11-20.  相似文献   
223.
A new series of 1beta-methyl carbapenems possessing a 6,7-disubstituted imidazo[5,1-b]thiazol-2-yl group directly attached to the C-2 position of the carbapenem nucleus was prepared, and the activities of these compounds against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated. To study the effect of basic moieties on anti-MRSA activity, we introduced an amino, or imino, or amidino group at the 6-position of imidazo[5,1-b]thiazole in place of the carbamoylmethyl moiety of CP5068. Anti-MRSA activities of almost all basic group-substituted carbapenems were improved, though some of the compounds showed stronger acute toxicity in mice than IPM. In order to decrease the toxicity without decreasing the activity, we introduced various additional functionalities around the basic moiety. Finally, we obtained CP5484, which has excellent anti-MRSA activity and low acute toxicity.  相似文献   
224.
Placental dysfunction underlies many complications during pregnancy, and better understanding of gene function during placentation could have considerable clinical relevance. However, the lack of a facile method for placenta-specific gene manipulation has hampered investigation of placental organogenesis and the treatment of placental dysfunction. We showed previously that transduction of fertilized mouse eggs with lentiviral vectors leads to transgene expression in both the fetus and the placenta. Here we report placenta-specific gene incorporation by lentiviral transduction of mouse blastocysts after removal of the zona pellucida. All of the placentas analyzed, but none of the fetuses, were transgenic. Application of this method substantially rescued mice deficient in Ets2, Mapk14 (also known as p38alpha) and Mapk1 (also known as Erk2) from embryonic lethality caused by placental defects. Ectopic expression of Mapk11 also complemented Mapk14 deficiency during placentation.  相似文献   
225.
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.  相似文献   
226.
227.
Infection with Helicobacter pylori (H. pylori) is a risk factor for the development of gastric cancer. Here we show that infection of gastric epithelial cells with 'cag' pathogenicity island (cagPAI)-positive H. pylori induced aberrant expression of activation-induced cytidine deaminase (AID), a member of the cytidine-deaminase family that acts as a DNA- and RNA-editing enzyme, via the IkappaB kinase-dependent nuclear factor-kappaB activation pathway. H. pylori-mediated upregulation of AID resulted in the accumulation of nucleotide alterations in the TP53 tumor suppressor gene in gastric cells in vitro. Our findings provide evidence that aberrant AID expression caused by H. pylori infection might be a mechanism of mutation accumulation in the gastric mucosa during H. pylori-associated gastric carcinogenesis.  相似文献   
228.
China is regarded by the World Health Organization as a major hot-spot region for Mycobacterium tuberculosis infection. Streptomycin has been deployed in China for over 50 years and is still widely used for tuberculosis treatment. We have developed a denaturing HPLC (DHPLC) method for detecting various gene mutations conferring drug resistance in M. tuberculosis. The present study focused on rpsL and rrs mutation analysis. Two hundred and fifteen M. tuberculosis clinical isolates (115 proved to be streptomycin-resistant and 100 susceptible by a routine proportional method) from China were tested to determine the streptomycin minimal inhibitory concentration (MIC), and subjected to DHPLC and concurrent DNA sequencing to determine rpsL and rrs mutations. The results showed that 85.2% (98/115) of streptomycin-resistant isolates harbored rpsL or rrs mutation, while rpsL mutation (76.5%, 88/115) dominated. MIC of 98 mutated isolates revealed no close correlation between mutation types and levels of streptomycin resistance. No mutation was found in any of the susceptible isolates. The DHPLC results were completely consistent with those of sequencing. The DHPLC method devised in this study can be regarded as a useful and powerful tool for detection of streptomycin resistance. This is the first report to describe DHPLC analysis of mutations in the rpsL and rrs genes of M. tuberculosis in a large number of clinical isolates.  相似文献   
229.
230.
Orange- to red-colored flowers are difficult to produce by conventional breeding techniques in some floricultural plants. This is due to the deficiency in the formation of pelargonidin, which confers orange to red colors, in their flowers. Previous researchers have reported that brick-red colored flowers can be produced by introducing a foreign dihydroflavonol 4-reductase (DFR) with different substrate specificity in Petunia hybrida, which does not accumulate pelargonidin pigments naturally. However, because these experiments used dihydrokaempferol (DHK)-accumulated mutants as transformation hosts, this strategy cannot be applied directly to other floricultural plants. Thus in this study, we attempted to produce red-flowered plants by suppressing two endogenous genes and expressing one foreign gene using tobacco as a model plant. We used a chimeric RNAi construct for suppression of two genes (flavonol synthase [FLS] and flavonoid 3′-hydroxylase [F3H]) and expression of the gerbera DFR gene in order to accumulate pelargonidin pigments in tobacco flowers. We successfully produced red-flowered tobacco plants containing high amounts of additional pelargonidin as confirmed by HPLC analysis. The flavonol content was reduced in the transgenic plants as expected, although complete inhibition was not achieved. Expression analysis also showed that reduction of the two-targeted genes and expression of the foreign gene occurred simultaneously. These results demonstrate that flower color modification can be achieved by multiple gene regulation without use of mutants if the vector constructs are designed resourcefully. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号