首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3007篇
  免费   166篇
  2023年   9篇
  2022年   19篇
  2021年   33篇
  2020年   18篇
  2019年   38篇
  2018年   48篇
  2017年   47篇
  2016年   73篇
  2015年   106篇
  2014年   143篇
  2013年   170篇
  2012年   215篇
  2011年   211篇
  2010年   151篇
  2009年   144篇
  2008年   239篇
  2007年   198篇
  2006年   214篇
  2005年   204篇
  2004年   205篇
  2003年   159篇
  2002年   183篇
  2001年   21篇
  2000年   18篇
  1999年   28篇
  1998年   38篇
  1997年   31篇
  1996年   30篇
  1995年   12篇
  1994年   17篇
  1993年   18篇
  1992年   12篇
  1991年   8篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   5篇
  1985年   9篇
  1984年   17篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1973年   2篇
  1972年   3篇
  1971年   1篇
排序方式: 共有3173条查询结果,搜索用时 15 毫秒
181.
To equalize X-linked gene dosage between the sexes in mammalian females, Xist RNA inactivates one of the two X-chromosomes. Here, we report the crucial function of Xist exon 7 in X-inactivation. Xist exon 7 is the second-largest exon with a well-conserved repeat E in eutherian mammals, but its role is often overlooked in X-inactivation. Although female ES cells with a targeted truncation of the Xist exon 7 showed no significant differences in their Xist expression levels and RNA stability from control cells expressing wild-type Xist, compromised localization of Xist RNA and incomplete silencing of X-linked genes on the inactive X-chromosome (Xi) were observed in the exon 7-truncated mutant cells. Furthermore, the interaction between the mutant Xist RNA and hnRNP U required for localization of Xist RNA to the Xi was impaired in the Xist exon 7 truncation mutant cells. Our results suggest that exon 7 of Xist RNA plays an important role for stable Xist RNA localization and silencing of the X-linked genes on the Xi, possibly acting through an interaction with hnRNP U.  相似文献   
182.
183.
ABSTRACT. Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14–3–3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset.  相似文献   
184.
The renin–angiotensin system is known to be involved in skin remodeling and inflammation. Previously, we reported that ultraviolet B (UVB) irradiation enhanced angiotensin-converting enzyme (ACE) expression and angiotensin II levels in hairless mouse skin, and an ACE inhibitor, enalapril maleate (EM), accelerated repair of UVB-induced wrinkles. In this study, we analyzed gene expression profiles by DNA microarray and protein distribution patterns using an immunofluorescence method to clarify the process of EM-accelerated wrinkle repair in UVB-irradiated hairless mouse skin. In the microarray analysis, we detected EM-induced up-regulation of various extracellular matrix (ECM)-related genes in the UVB-irradiated skin. In the immunofluorescence, we confirmed that type I collagen α1 chain, fibrillin 1, elastin and dystroglycan 1 in the skin decreased after repeated UVB irradiation but staining for these proteins was improved by EM treatment. In addition, ADAMTS2 and MMP-14 also increased in the EM-treated skin. Although the relationship between these molecules and wrinkle formation is not clear yet, our present data suggest that the molecules are involved in the repair of UVB-induced wrinkles.  相似文献   
185.
Processing speed is considered a key cognitive resource and it has a crucial role in all types of cognitive performance. Some researchers have hypothesised the importance of white matter integrity in the brain for processing speed; however, the relationship at the whole-brain level between white matter volume (WMV) and processing speed relevant to the modality or problem used in the task has never been clearly evaluated in healthy people. In this study, we used various tests of processing speed and Voxel-Based Morphometry (VBM) analyses, it is involves a voxel-wise comparison of the local volume of gray and white, to assess the relationship between processing speed and regional WMV (rWMV). We examined the association between processing speed and WMV in 887 healthy young adults (504 men and 383 women; mean age, 20.7 years, SD, 1.85). We performed three different multiple regression analyses: we evaluated rWMV associated with individual differences in the simple processing speed task, word–colour and colour–word tasks (processing speed tasks with words) and the simple arithmetic task, after adjusting for age and sex. The results showed a positive relationship at the whole-brain level between rWMV and processing speed performance. In contrast, the processing speed performance did not correlate with rWMV in any of the regions examined. Our results support the idea that WMV is associated globally with processing speed performance regardless of the type of processing speed task.  相似文献   
186.
Major depressive disorder (MDD) is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS) as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC) of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a) may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of physiological homeostasis in humans.  相似文献   
187.
ADP-ribosylation factor (Arf) 1 is thought to affect the morphologies of organelles, such as the Golgi apparatus, and regulate protein trafficking pathways. Mice have six Arf isoforms. In knockdown experiments with HeLa cells, no single Arf isoform among Arf1–5 is required for organelle morphologies or any membrane trafficking step. This suggests that the cooperation of two or more Arfs is a general feature. Although many cell biological and biochemical analyses have proven the importance of Arf1, the physiological roles of Arf1 in mice remain unknown. To investigate the activity of Arf1 in vivo, we established Arf1-deficient mice. Arf−/− blastocysts were identified at the expected Mendelian ratio. The appearance of these blastocysts was indistinguishable from that of wild-type and Arf+/− blastocysts, and they grew normally in an in vitro culture system. However, Arf−/− embryos were degenerated at E5.5, and none survived to E12.5, suggesting that they died soon after implantation. These data establish for the first time that the Arf1 gene is indispensable for mouse embryonic development after implantation.  相似文献   
188.
Autophagy is an intracellular degradative system that is believed to be involved in the aging process. The contribution of autophagy to age-related changes in the human skin is unclear. In this study, we examined the relationship between autophagy and skin aging. Transmission electron microscopy and immunofluorescence microscopy analyses of skin tissue and cultured dermal fibroblasts derived from women of different ages revealed an increase in the number of nascent double-membrane autophagosomes with age. Western blot analysis showed that the amount of LC3-II, a form associated with autophagic vacuolar membranes, was significantly increased in aged dermal fibroblasts compared with that in young dermal fibroblasts. Aged dermal fibroblasts were minimally affected by inhibition of autophagic activity. Although lipofuscin autofluorescence was elevated in aged dermal fibroblasts, the expression of Beclin-1 and Atg5—genes essential for autophagosome formation—was similar between young and aged dermal fibroblasts, suggesting that the increase of autophagosomes in aged dermal fibroblasts was due to impaired autophagic flux rather than an increase in autophagosome formation. Treatment of young dermal fibroblasts with lysosomal protease inhibitors, which mimic the condition of aged dermal fibroblasts with reduced autophagic activity, altered the fibroblast content of type I procollagen, hyaluronan and elastin, and caused a breakdown of collagen fibrils. Collectively, these findings suggest that the autophagy pathway is impaired in aged dermal fibroblasts, which leads to deterioration of dermal integrity and skin fragility.  相似文献   
189.
Mushrooms contain large quantities of α-glucans. Shiitake (Lentinula edodes), Japan’s most popular edible mushroom, has been reported to contain about 6% (weight/dried weight) of α-(1,3)-glucan. This glucan is one of the major components of oral biofilm formed by the cariogenic bacteria Streptococcus mutans and Streptococcus sobrinus. We found that extracts from shiitake and other edible mushrooms could reduce preformed biofilms of S. mutans and S. sobrinus in the presence of dextranase. We also investigated the α-glucanase activities of shiitake mushroom extracts and their effects on biofilm formation. The extracts possessed α-glucanase activity and degraded water-insoluble glucans from mutans streptococci. The extracts strongly inhibited the sucrose-dependent formation of biofilms by S. mutans and S. sobrinus in the presence of dextranase. Our results suggest that some components of mushrooms, including α-glucanases, might inhibit the sucrose-induced formation of oral biofilms.  相似文献   
190.
Previously, we achieved approximately 30-fold enhanced secretion of the protease-sensitive model protein human growth hormone (hGH) by multiple gene deletion of seven obstructive proteases in the fission yeast Schizosaccharomyces pombe. However, intracellular retention of secretory hGH was found in the resultant multiprotease-deficient strains. As a solution, genetic modification of the intracellular trafficking pathway that is related to intracellular retention of hGH was attempted on a protease octuple deletant strain. Vacuolar accumulation of the intracellularly retained hGH was identified by secretory expression of hGH fused with EGFP, and three vacuolar protein sorting (vps)-deficient strains, vps10Δ, vps22Δ, and vps34Δ, were determined on account of their hGH secretion efficiency. The mutant vps10Δ was found to be effective for hGH secretion, which suggested a role for vps10 in the vacuolar accumulation of the intracellularly retained hGH. Finally, vps10 deletion was performed on the protease octuple deletant strain, which led to an approximately 2-fold increase in hGH secretion. This indicated the possible application of secretory-pathway modification and multiple protease deletion for improving heterologous protein secretion from the fission yeast S. pombe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号