首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   16篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   6篇
  2013年   13篇
  2012年   6篇
  2011年   17篇
  2010年   4篇
  2009年   13篇
  2008年   11篇
  2007年   10篇
  2006年   17篇
  2005年   12篇
  2004年   10篇
  2003年   10篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
  1981年   5篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
  1968年   2篇
排序方式: 共有231条查询结果,搜索用时 328 毫秒
91.
Passion fruit seed extract (PFSE), a product rich in stilbenes such as piceatannol and scirpusin B, has various physiological effects. It is unclear whether PFSE and its stilbene derivatives inhibit cancer cell proliferation via human glyoxalase I (GLO I), the rate-limiting enzyme for detoxification of methylglyoxal. We examined the anticancer effects of PFSE in two types of human cancer cell lines with different GLO I expression levels, NCI–H522 cells (highly-expressed GLO I) and HCT116 cells (lowly-expressed GLO I). PFSE and its stilbenes inhibited GLO I activity. In addition, PFSE and its stilbenes supressed the cancer cell proliferation of NCI–H522 cells more than HCT116 cells. These observations suggest that PFSE can provide a novel anticancer strategy for prevention and treatment.  相似文献   
92.
We developed a transgenic mouse line with Y chromosome-linked green fluorescent protein expressing transgenes (Y-GFP) by the conventional microinjection into the pronucleus of C57BL/6J fertilized oocytes. Embryonic stem (ES) cells derived from Y-GFP mice enabled not only sexing but also the identification of 39, XO karyotype by the lack of Y chromosome. Actually, when fluorescence activated cell sorting (FACS) was applied to Y-GFP ES cells, non-fluorescent ES cells were conveniently collected and showed the lack of Y chromosome by PCR genotyping and Southern blot analysis. FACS analysis revealed Y chromosome loss occurred at 2.9 % of 40, XY ES cells after five passages. These Y-GFP ES cells are potentially applicable to reduce the time, cost and effort needed to generate the gene-targeted mice by the production of male and female mice derived from the same ES cell clone.  相似文献   
93.
94.
Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression.  相似文献   
95.
Hyperuricemia is a significant factor in a variety of diseases, including gout and cardiovascular diseases. Although renal excretion largely determines plasma urate concentration, the molecular mechanism of renal urate handling remains elusive. Previously, we identified a major urate reabsorptive transporter, URAT1 (SLC22A12), on the apical side of the renal proximal tubular cells. However, it is not known how urate taken up by URAT1 exits from the tubular cell to the systemic circulation. Here, we report that a sugar transport facilitator family member protein GLUT9 (SLC2A9) functions as an efflux transporter of urate from the tubular cell. GLUT9-expressed Xenopus oocytes mediated saturable urate transport (K(m): 365+/-42 microm). The transport was Na(+)-independent and enhanced at high concentrations of extracellular potassium favoring negative to positive potential direction. Substrate specificity and pyrazinoate sensitivity of GLUT9 was distinct from those of URAT1. The in vivo role of GLUT9 is supported by the fact that a renal hypouricemia patient without any mutations in SLC22A12 was found to have a missense mutation in SLC2A9, which reduced urate transport activity in vitro. Based on these data, we propose a novel model of transcellular urate transport in the kidney; urate [corrected] is taken up via apically located URAT1 and exits the cell via basolaterally located GLUT9, which we suggest be renamed URATv1 (voltage-driven urate transporter 1).  相似文献   
96.
Candida albicans is a human fungal pathogen and has been extensively studied because of its clinical importance. Comprehensive gene analyses have, however, made little progress. This is because of the diploid and asexual characteristics of the fungus that hamper gene disruptions. In this study, we found that ultraviolet (UV) irradiation, as well as mutagen treatment, strongly stimulated loss of heterozygosity (LOH) in strains harboring artificially constructed heterozygosity. UV-induced LOH occurred more frequently in cells within the logarithmic phase of growth compared to those within the stationary phase of growth. This was observed at all loci tested on chromosome 7, except for a locus neighboring the centromere. C. albicans RAD52, whose orthologue in Saccharomyces cerevisiae was reported to be involved in DNA repair by homologous recombination, was shown to be required for UV-induced LOH. These results suggest that high efficiency LOH caused by UV irradiation could be a prominent tool for gene analyses in C. albicans.  相似文献   
97.
The life cycle of calicivirus is not fully understood because most of the viruses cannot be propagated in tissue culture cells. We studied the mechanism of calicivirus entry into cells using feline calicivirus (FCV), a cultivable calicivirus. From the cDNA library of Crandell-Rees feline kidney (CRFK) cells, feline junctional adhesion molecule 1 (JAM-1), an immunoglobulin-like protein present in tight junctions, was identified as a cellular-binding molecule of the FCV F4 strain, a prototype strain in Japan. Feline JAM-1 expression in nonpermissive hamster lung cells led to binding and infection by F4 and all other strains tested. An anti-feline JAM-1 antibody reduced the binding of FCV to permissive CRFK cells and strongly suppressed the cytopathic effect (CPE) and FCV progeny production in infected cells. Some strains of FCV, such as F4 and F25, have the ability to replicate in Vero cells. We found that regardless of replication ability, FCV bound to Vero and 293T cells via simian and human JAM-1, respectively. In Vero cells, an anti-human JAM-1 antibody inhibited binding, CPE, and progeny production by F4 and F25. In addition, feline JAM-1 expression permitted FCV infection in 293T cells. Taken together, our results demonstrate that feline JAM-1 is a functional receptor for FCV, simian JAM-1 also functions as a receptor for some strains of FCV, and the interaction between FCV and JAM-1 molecules may be a determinant of viral tropism. This is the first report concerning a functional receptor for the viruses in the family Caliciviridae.  相似文献   
98.
Uchiyama Y  Suzuki Y  Sakaguchi K 《Planta》2008,227(6):1233-1241
In plants, there are no DNA polymerase β (Pol β) and DNA ligase III (Lig3) genes. Thus, the plant short-patch base excision repair (short-patch BER) pathway must differ considerably from that in mammals. We characterized the rice (Oryza Sativa L. cv. Nipponbare) homologue of the mammalian X-ray repair cross complementing 1 (XRCC1), a well-known BER protein. The plant XRCC1 lacks the N-terminal domain (NTD) which is required for Pol β binding and is essential for mammalian cell survival. The recombinant rice XRCC1 (OsXRCC1) protein binds single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and also interacts with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. Through immunoprecipitation, we demonstrated that OsXRCC1 forms a complex with PCNA in vivo. OsXRCC1 mRNA was expressed in all rice organs and was induced by application of bleomycin, but not of MMS, H2O2 or UV-B. Bleomycin also increased the fraction of OsXRCC1 associated with chromatin. These results suggest that OsXRCC1 contributes to DNA repair pathways that differ from the mammalian BER system.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号