首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   13篇
  443篇
  2021年   3篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   13篇
  2015年   10篇
  2014年   8篇
  2013年   24篇
  2012年   18篇
  2011年   32篇
  2010年   6篇
  2009年   9篇
  2008年   29篇
  2007年   27篇
  2006年   21篇
  2005年   20篇
  2004年   21篇
  2003年   23篇
  2002年   16篇
  2001年   17篇
  2000年   15篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1993年   2篇
  1992年   8篇
  1991年   6篇
  1990年   13篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1983年   2篇
  1982年   3篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   4篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1967年   2篇
  1966年   6篇
  1965年   1篇
排序方式: 共有443条查询结果,搜索用时 0 毫秒
121.
Fibroblast-like stromal cells modulate cancer cells through secreted factors and adhesion, but those factors are not fully understood. Here, we have identified critical stromal factors that modulate cancer growth positively and negatively. Using a cell co-culture system, we found that gastric stromal cells secreted IL-6 as a growth and survival factor for gastric cancer cells. Moreover, gastric cancer cells secreted PGE2 and TNFα that stimulated IL-6 secretion by the stromal cells. Furthermore, we found that stromal cells secreted glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth, a finding confirmed in other cell systems. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. These results demonstrate that stromal cells could regulate cancer cell growth through the balance of these secreted factors. We propose that negative regulation of cancer growth using GAPDH could be a new anti-cancer strategy.  相似文献   
122.
Mouse 8S-lipoxygenase (8-LOX) metabolizes arachidonic acid (AA) specifically to 8S-hydroperoxyeicosatetraenoic acid (8S-HPETE), which will be readily reduced under physiological circumstances to 8S-hydroxyeicosatetraenoic acid (8S-HETE), a natural agonist of peroxisome proliferator-activated receptor alpha (PPAR alpha). Here, we investigated whether 8-LOX could further oxygenate AA and whether the products could activate PPARs. The purified recombinant 8-LOX converted AA exclusively to 8S-HPETE and then to (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicosatetraenoic acid (8S,15S-diHPETE). The kcat/Km values for 8S-HPETE and AA were 3.3x10(3) and 2.7x10(4) M(-1) s(-1), respectively. 8-LOX also dioxygenated 8S-HETE and 15S-H(P)ETE specifically to the corresponding 8S,15S-disubstituted derivatives. By contrast, 15-LOX-2, a human homologue of 8-LOX, produced 8S,15S-diH(P)ETE from 8S-H(P)ETE but not from AA nor 15S-H(P)ETE. 8S,15S-diHETE activated PPAR alpha more strongly than 8S-HETE did. The present results suggest that 8S,15S-diH(P)ETE as well as 8S-H(P)ETE would contribute to the physiological function of 8-LOX and also that 8-LOX can function as a potential 15-LOX.  相似文献   
123.
Urechistachykinin I and II (Uru-TK I and II) are invertebrate tachykinin-related peptides (TRPs), which have been isolated from echiuroid worms. The cDNA sequence encoding the Uru-TK I and II revealed that the precursor also encoded five TRP-like peptides. Here, we report the characterization of these Uru-TK-like peptides named as Uru-TK III-VII. Northern and Southern blot analyses demonstrated that Uru-TK mRNA is localized in nerve tissue. In addition, the presence of the Uru-TK-like peptides as matured forms in the nerve tissue was detected by mass spectrometric analysis, and identified these peptides were shown to exhibit a contractile activity on cockroach hindgut that was as potent as that of Uru-TK II. Furthermore, synthetic Uru-TK-like peptide analogs which contained Met-NH2 instead of Arg-NH2 at their C-termini were shown to possess a potential to bind to a mammalian tachykinin receptor, indicating that Uru-TK-like peptides are likely to correspond to vertebrate tachykinins, except for the difference at the C-terminal residue. These findings show that Uru-TK-like peptides are essentially equivalent to Uru-TK I and II, leading to the proposal that Uru-TK-like peptides play an essential role as invertebrate tachykinin neuropeptides.  相似文献   
124.
To elucidate the pathophysiological roles of vagosympathetic interactions in ischemia-induced myocardial norepinephrine (NE) and acetylcholine (ACh) release, we measured myocardial interstitial NE and ACh levels in response to a left anterior descending coronary occlusion in the following groups of anesthetized cats: intact autonomic innervation (INT, n = 7); vagotomy (VX, n = 6); local administration of atropine (Atro, n = 6); transection of the stellate ganglia (TSG, n = 5); local administration of phentolamine (Phen, n = 6); and combined vagotomy and transection of the stellate ganglia (VX+TSG, n = 5). The maximum NE release was enhanced in the VX group (141 +/- 30 nmol/l, means +/- SE, P < 0.05) compared with the INT group (61 +/- 12 nmol/l). Neither the Atro (50 +/- 24 nmol/l) nor VX+TSG groups (84 +/- 25 nmol/l) showed enhanced NE release. The maximum ACh release was unaltered in the TSG and Phen groups compared with the INT group (19 +/- 4, 18 +/- 4, and 13 +/- 3 nmol/l, respectively). These findings indicate that the cardiac vagal afferent but not efferent activity reduced the ischemia-induced myocardial NE release. In contrast, the cardiac sympathetic afferent and efferent activities played little role in the ischemia-induced myocardial ACh release.  相似文献   
125.

Background

Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.

Methods/Results

Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8) to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.

Conclusions/Significance

The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD.  相似文献   
126.
127.
Cytoglobin/stellate cell activation-associated protein (Cygb/STAP), a hemoprotein, functions as part of an O2 reservoir with protective effects against oxidative stress in hepatic stellate cells. Heterogeneous expression of the neural cell adhesion molecule (NCAM)+ and/or α-smooth muscle actin (αSMA)+ has been noted in subepithelial myofibroblasts and interstitial cells of the same lineage in the colorectum. We have demonstrated that early genomic instability of both epithelial and stromal cells in ulcerative colitis (UC) is important for colorectal tumorigenesis, as well as for mucosal remodeling. To further clarify possible roles of stromal cells in mucosal remodeling and tumor development in UC, we here focused on Cygb expression of subepithelial myofibroblasts and interstitial cells, as well as αSMA and HSP47. Noncancerous mucosa of resected rectae from UC patients with or without colorectal neoplasia (14 and 20 cases, respectively) and of sporadic rectal cancer cases (16) was analyzed immunohistochemically, as well as by immuno-fluorescence and electron microscopy. The results, heterogeneous phenotypes of Cygb+, αSMA+ and HSP47+ subepithelial myofibroblasts and interstitial cells, corresponding to rectal stellate cells, were demonstrated. A decrease of Cygb+ subepithelial myofibroblasts and an increase of αSMA+ interstitial cells were significant in UC, as compared to normal rectal mucosa. Furthermore, a decrease of Cygb+ subepithelial myofibroblasts, correlating with αSMA+ and HSP47+ cells, was significant in long-standing UC with neoplasia. In conclusion, there are heterogeneous phenotypes of Cygb+, αSMA+ and HSP47+ subepithelial myofibroblasts and interstitial cells in the rectal mucosa. Mucosal remodeling with alterations of Cygb+ and/or αSMA+/HSP47+ stromal cells might have some relation to UC-associated tumorigenesis.  相似文献   
128.
The activation of peroxisome-proliferator-activated receptor-γ (PPARγ), which plays a central role in adipocyte differentiation, depends on ligand-dependent co-activator recruitment. In this study, we developed a novel method of PPARγ ligand screening by measuring the increase in fluorescent polarization accompanied by the interaction of a fluorescent co-activator and PPARγ. Sterol receptor co-activator-1 (SRC-1), a major PPARγ co-activator, was probed by fluorescent TAMRA by the Amber codon fluorescence probe method. Polarization was increased by adding PPARγ ligands to a solution containing labeled SRC-1 (designated TAMRA-SRC-S) and PPARγ. The disassociation constants (Kd) of the PPARγ synthesized ligands, pioglitazone (221 nM), troglitazone (83.0 nM), and 15-deoxy-Δ12,14-prostaglandin J(2) (15d-ΔPGJ(2)) (156 nM), were determined by this method. Farnesol (2.89 μM) and bixin (21.1 μM), which we have reported to be PPARγ ligands, increased the fluorescent polarization. Their Kd values were in agreement with the ED(50) values obtained in the luciferase assay. The results indicate that the method is valuable for screening natural PPARγ ligands.  相似文献   
129.
130.
Lipopolysaccharides (LPS) induces intrahepatic cholestasis and canalicular multispecific organic anion transporter (CMOAT/MRP2) plays a central role in hepatic bilirubin transport. This study examined the role of Kupffer cell in LPS-induced cholestasis. Rats were injected intravenously with LPS. Kupffer cells were inactivated with gadolinium chloride (Gd). CMOAT/MRP2 mRNA expression was time- and dose-dependently decreased by LPS injection with a decrease in bile flow and an increase in serum bilirubin level. Gd pretreatment inhibited decrease in CMOAT/MRP2 mRNA and bile flow, and increase in serum bilirubin. Kupffer cell-conditioned medium decreased CMOAT/MRP2 expression. Addition of anti-IL-1 or anti-TNFalpha antibody restored CMOAT/MRP2 expression, whereas IL-1 and TNFalpha decreased the expression. MAP kinases were activated by addition of the conditioned medium, and addition of PD98059 or SB203580 restored CMOAT/MRP2 expression. These results suggest that LPS activates Kupffer cells to secrete IL-1 and TNFalpha, which in turn activate MAP kinases and decrease CMOAT/MRP2 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号