首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1596篇
  免费   97篇
  国内免费   2篇
  2022年   2篇
  2021年   15篇
  2020年   7篇
  2019年   19篇
  2018年   20篇
  2017年   25篇
  2016年   29篇
  2015年   53篇
  2014年   48篇
  2013年   141篇
  2012年   113篇
  2011年   119篇
  2010年   59篇
  2009年   69篇
  2008年   113篇
  2007年   99篇
  2006年   96篇
  2005年   107篇
  2004年   125篇
  2003年   98篇
  2002年   105篇
  2001年   22篇
  2000年   13篇
  1999年   10篇
  1998年   17篇
  1997年   10篇
  1996年   17篇
  1995年   10篇
  1994年   14篇
  1993年   4篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   10篇
  1982年   10篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   5篇
  1954年   3篇
排序方式: 共有1695条查询结果,搜索用时 312 毫秒
71.
The AP sites are representative of DNA damage and known as an intermediate in the base excision repair (BER) pathway which is involved in the repair of damaged nucleobases by reactive oxygen species, UVA irradiation, and DNA alkylating agents. Therefore, it is expected that the inhibition or modulation of the AP site repair pathway may be a new type of anticancer drug. In this study, we investigated the effects of the thioguanine-polyamine ligands (SG-ligands) on the affinity and the reactivity for the AP site under UVA irradiated and non-irradiated conditions. The SG-ligands have a photo-reactivity with the A-F-C sequence where F represents a tetrahydrofuran AP site analogue. Interestingly, the SG-ligands promoted the β-elimination of the AP site followed by the formation of a covalent bond with the β-eliminated fragment without UVA irradiation.  相似文献   
72.
The in ovo electroporation technique in chicken embryos has enabled investigators to uncover the functions of numerous developmental genes. In this technique, the ubiquitous promoter, CAGGS (CMV base), has often been used for overexpression experiments. However, if a given gene plays a role in multiple steps of development and if overexpression of this gene causes fatal consequences at the time of electroporation, its roles in later steps of development would be overlooked. Thus, a technique with which expression of an electroporated DNA can be controlled in a stage-specific manner needs to be formulated. Here we show for the first time that the tetracycline-controlled expression method, "tet-on" and "tet-off", works efficiently to regulate gene expression in electroporated chicken embryos. We demonstrate that the onset or termination of expression of an electroporated DNA can be precisely controlled by timing the administration of tetracycline into an egg. Furthermore, with this technique we have revealed previously unknown roles of RhoA, cMeso-1 and Pax2 in early somitogenesis. In particular, cMeso-1 appears to be involved in cell condensation of a newly forming somite by regulating Pax2 and NCAM expression. Thus, the novel molecular technique in chickens proposed in this study provides a useful tool to investigate stage-specific roles of developmental genes.  相似文献   
73.
Transformation of atrioventricular (AV) canal endocardium into invasive mesenchyme correlates spatially and temporally with the expression of bone morphogenetic protein (BMP)-2 in the AV myocardium. We revealed the presence of mRNA of Type I BMP receptors, BMPR-1A (ALK3), BMPR-1B (ALK6) and ALK2 in chick AV endocardium at stage-14(-), the onset of epithelial to mesenchymal transformation (EMT), by RT-PCR and localized BMPR-1B mRNA in the endocardium by in situ hybridization. To circumvent the functional redundancies among the Type I BMP receptors, we applied dominant-negative (dn) BMPR-1B-viruses to chick AV explants and whole-chick embryo cultures to specifically block BMP signaling in AV endocardium during EMT. dnBMPR-1B-virus infection of AV endocardial cells abolished BMP-2-supported AV endocardial EMT. Conversely, caBMPR-1B-virus infection promoted AV endocardial EMT in the absence of AV myocardium. Moreover, dnBMPR-1B-virus treatments significantly reduced myocardially supported EMT in AV endocardial-myocardial co-culture. AV cushion mesenchymal cell markers, alpha-smooth muscle actin (SMA), and TGFbeta3 in the endocardial cells were promoted by caBMPR-1B and reduced by dnBMPR-1B infection. Microinjection of the virus into the cardiac jelly in the AV canal at stage-13 in vivo (ovo) revealed that the dnBMPR-1B-virus-infected cells remained in the endocardial epithelium, whereas caBMPR-1B-infected cells invaded deep into the cushions. These results provide evidence that BMP signaling through the AV endocardium is required for the EMT and the activation of the BMP receptor in the endocardium can promote AV EMT in the chick.  相似文献   
74.
To examine the involvement of lipid rafts in an age-associated decline in T cell function, we analyzed the effect of aging on the constituents of lipid rafts in resting mouse CD4(+) T cells. We found a pronounced, age-dependent reduction in PAG/Cbp, which is involved in the regulation of Src family kinases (SFKs) by recruiting Csk (a negative regulator of SFKs) to lipid rafts. This reduction is specific for T cells and is attributed, at least in part, to the reduction in its mRNA level. The reduction of PAG accompanies marked impairment in recruiting Csk to lipid rafts and a concomitant decrease in the inactive forms of SFKs. These findings indicate that old mouse CD4(+) T cells have a defect in a negative SFK regulatory system.  相似文献   
75.
Fbs1 is an F-box protein present abundantly in the nervous system. Similar to the ubiquitously expressed Fbs2, Fbs1 recognizes N-glycans at the innermost position as a signal for unfolded glycoproteins, probably in the endoplasmic reticulum-associated degradation pathway. Here, we show that the in vivo majority of Fbs1 is present as Fbs1-Skp1 heterodimers or Fbs1 monomers but not SCF(Fbs1) complex. The inefficient SCF complex formation of Fbs1 and the restricted presence of SCF(Fbs1) bound on the endoplasmic reticulum membrane were due to the short linker sequence between the F-box domain and the sugar-binding domain. In vitro, Fbs1 prevented the aggregation of the glycoprotein through the N-terminal unique sequence of Fbs1. Our results suggest that Fbs1 assists clearance of aberrant glycoproteins in neuronal cells by suppressing aggregates formation, independent of ubiquitin ligase activity, and thus functions as a unique chaperone for those proteins.  相似文献   
76.
Chlamydia trachomatis is an obligate intracellular pathogen that can persist in the urogenital tract. Mechanisms by which C. trachomatis evades clearance by host innate immune responses are poorly described. CD1d is MHC-like, is expressed by epithelial cells, and can signal innate immune responses by NK and NKT cells. Here we demonstrate that C. trachomatis infection down-regulates surface-expressed CD1d in human penile urethral epithelial cells through proteasomal degradation. A chlamydial proteasome-like activity factor (CPAF) interacts with the CD1d heavy chain, and CPAF-associated CD1d heavy chain is then ubiquitinated and directed along two distinct proteolytic pathways. The degradation of immature glycosylated CD1d was blocked by the proteasome inhibitor lactacystin but not by MG132, indicating that degradation was not via the conventional proteasome. In contrast, the degradation of non-glycosylated CD1d was blocked by lactacystin and MG132, consistent with conventional cellular cytosolic degradation of N-linked glycoproteins. Immunofluorescent microscopy confirmed the interruption of CD1d trafficking to the cell surface, and the dislocation of CD1d heavy chains into both the cellular cytosol and the chlamydial inclusion along with cytosolic CPAF. C. trachomatis targeted CD1d toward two distinct proteolytic pathways. Decreased CD1d surface expression may help C. trachomatis evade detection by innate immune cells and may promote C. trachomatis persistence.  相似文献   
77.
78.
Giardia lamblia is a leading protozoal cause of diarrheal disease worldwide. Infection is associated with abdominal pain, malabsorption and weight loss, and protracted post-infectious syndromes. A human vaccine is not available against G. lamblia. Prior studies with human and murine immune sera have identified several parasite antigens, including surface proteins and metabolic enzymes with intracellular functions. While surface proteins have demonstrated vaccine potential, they can exhibit significant variation between G. lamblia strains. By comparison, metabolic enzymes show greater conservation but their vaccine potential has not been established. To determine whether such proteins can serve as vaccine candidates, we focused on two enzymes, α-enolase (ENO) and ornithine carbamoyl transferase (OCT), which are involved in glycolysis and arginine metabolism, respectively. We show in a cohort of patients with confirmed giardiasis that both enzymes are immunogenic. Intranasal immunization with either enzyme antigen in mice induced strong systemic IgG1 and IgG2b responses and modest mucosal IgA responses, and a marked 100- to 1,000-fold reduction in peak trophozoite load upon oral G. lamblia challenge. ENO immunization also reduced the extent and duration of cyst excretion. Examination of 44 cytokines showed only minimal intestinal changes in immunized mice, although a modest increase of CCL22 was observed in ENO-immunized mice. Spectral flow cytometry revealed increased numbers and activation state of CD4 T cells in the small intestine and an increase in α4β7-expressing CD4 T cells in mesenteric lymph nodes of ENO-immunized mice. Consistent with a key role of CD4 T cells, immunization of CD4-deficient and Rag-2 deficient mice failed to induce protection, whereas mice lacking IgA were fully protected by immunization, indicating that immunity was CD4 T cell-dependent but IgA-independent. These results demonstrate that conserved metabolic enzymes can be effective vaccine antigens for protection against G. lamblia infection, thereby expanding the repertoire of candidate antigens beyond primary surface proteins.  相似文献   
79.
Erythroid 5-aminolevulinate synthase (ALAS-E) catalyzes the first step of heme biosynthesis in erythroid cells. Mutation of human ALAS-E causes the disorder X-linked sideroblastic anemia. To examine the roles of heme during hematopoiesis, we disrupted the mouse ALAS-E gene. ALAS-E-null embryos showed no hemoglobinized cells and died by embryonic day 11.5, indicating that ALAS-E is the principal isozyme contributing to erythroid heme biosynthesis. In the ALAS-E-null mutant embryos, erythroid differentiation was arrested, and an abnormal hematopoietic cell fraction emerged that accumulated a large amount of iron diffusely in the cytoplasm. In contrast, we found typical ring sideroblasts that accumulated iron mostly in mitochondria in adult mice chimeric for ALAS-E-null mutant cells, indicating that the mode of iron accumulation caused by the lack of ALAS-E is different in primitive and definitive erythroid cells. These results demonstrate that ALAS-E, and hence heme supply, is necessary for differentiation and iron metabolism of erythroid cells.  相似文献   
80.
Wiget P  Shimada Y  Butty AC  Bi E  Peter M 《The EMBO journal》2004,23(5):1063-1074
Receptor-mediated cell polarization via heterotrimeric G-proteins induces cytoskeletal rearrangements in a variety of organisms. In yeast, Far1p is required for orienting cell growth towards the mating partner by linking activated Gbetagamma to the guanine-nucleotide exchange factor (GEF) Cdc24p, which activates the Rho-type GTPase Cdc42p. Here we investigated the role of Far1p in the regulation of Cdc24p in vivo. Using time-lapse microscopy of mating cells and artificial membrane targeting of Far1p, we show that Far1p is necessary and sufficient to recruit Cdc24p to the plasma membrane. Wild-type Far1p contains a PH-like domain, which is required for its membrane localization in vivo. Interestingly, expression of membrane-targeted Far1p causes toxicity, most likely by activating Cdc42p uniformly at the cell cortex. The ability of full-length Far1p to function as an activator of Cdc24p in vivo requires its interaction with Cdc24p and Gbetagamma. Our results imply that Gbetagamma not only targets Far1p to the correct site but may also trigger a conformational change in Far1p that is required for its ability to activate Cdc24p in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号