首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2061篇
  免费   129篇
  国内免费   2篇
  2192篇
  2022年   14篇
  2021年   16篇
  2020年   9篇
  2019年   25篇
  2018年   27篇
  2017年   33篇
  2016年   41篇
  2015年   69篇
  2014年   67篇
  2013年   132篇
  2012年   141篇
  2011年   149篇
  2010年   78篇
  2009年   76篇
  2008年   135篇
  2007年   131篇
  2006年   126篇
  2005年   129篇
  2004年   147篇
  2003年   115篇
  2002年   121篇
  2001年   29篇
  2000年   25篇
  1999年   23篇
  1998年   25篇
  1997年   13篇
  1996年   16篇
  1995年   16篇
  1994年   17篇
  1992年   31篇
  1991年   23篇
  1990年   15篇
  1989年   10篇
  1988年   13篇
  1987年   10篇
  1986年   15篇
  1985年   7篇
  1984年   6篇
  1983年   14篇
  1982年   12篇
  1981年   6篇
  1979年   8篇
  1978年   8篇
  1977年   8篇
  1976年   5篇
  1975年   5篇
  1974年   7篇
  1973年   6篇
  1970年   5篇
  1968年   5篇
排序方式: 共有2192条查询结果,搜索用时 0 毫秒
81.
System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.  相似文献   
82.
83.
The Escherichia coli AlkB protein was recently found to repair cytotoxic DNA lesions 1-methyladenine and 3-methylcytosine by using a novel iron-catalyzed oxidative demethylation mechanism. Three human homologs, ABH1, ABH2 and ABH3, have been identified, and two of them, ABH2 and ABH3, were shown to have similar repair activities to E.coli AlkB. However, ABH1 did not show any repair activity. It was suggested that ABH3 prefers single-stranded DNA and RNA substrates, whereas AlkB and ABH2 can repair damage in both single- and double-stranded DNA. We employed a chemical cross-linking approach to probe the structure and substrate preferences of AlkB and its three human homologs. The putative active site iron ligands in these proteins were mutated to cysteine residues. These mutant proteins were used to cross-link to different DNA probes bearing thiol-tethered bases. Disulfide-linked protein–DNA complexes can be trapped and analyzed by SDS–PAGE. Our results show that ABH2 and ABH3 have structural and functional similarities to E.coli AlkB. ABH3 shows preference for the single-stranded DNA probe. ABH1 failed to cross-link to the probes tested. This protein, unlike other AlkB proteins, does not seem to interact with DNA in its E.coli expressed form.  相似文献   
84.
A novel endo-exonuclease, DmGEN (Drosophila Melanogaster XPG-like endonuclease), was identified in D.melanogaster. DmGEN is composed of five exons and four introns, and the open reading frame encodes a predicted product of 726 amino acid residues with a molecular weight of 82.5 kDa and a pI of 5.36. The gene locus on Drosophila polytene chromosomes was detected at 64C9 on the left arm of chromosome 3 as a single site. The encoded protein showed a relatively high degree of sequence homology with the RAD2 nucleases, especially XPG. Although the XPG-N- and XPG-I-domains are highly conserved in sequence, locations of the domains are similar to those of FEN-1 and EXO-1, and the molecular weight of the protein is close to that of EXO-1. In vitro, DmGEN showed endonuclease and 3'-5' exonuclease activities with both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), but the endonuclease action with dsDNA was quite specific: 5'-3' exonuclease activity was found to occur with nicked DNA, while dsDNA was endonucleolytically cut at 3-4 bp from the 5' end. Homologs are widely found in mammals and higher plants. The data suggest that DmGEN belongs to a new class of RAD2 nuclease.  相似文献   
85.
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.  相似文献   
86.
87.
Contraction of skeletal muscle generates pressure stimuli to intramuscular tissues. However, the effects of pressure stimuli, other than those created by electricity or nerve impulse, on physiological and biochemical responses in skeletal muscles are unknown. The purpose of this study is to examine the effects of a pure pressure stimulus on metabolic responses in a skeletal muscle cell line. Atmospheric pressure was applied to L6 myoblasts using an original apparatus. Succinate dehydrogenase (SDH) activity was evaluated by colorimetric assay using tetrazolium monosodium salt. The amounts of 2-deoxy-[(3)H]glucose uptake and lactate release were measured. SDH activity was 2.6- to 2.9-fold higher in pressurized L6 cells than in nonpressurized L6 cells (P < 0.01), and 2-deoxy-[(3)H]glucose uptake was 2.2-fold higher (P < 0.001). In addition, the amount of released lactate decreased from 6.8 to 3.7 mumol/dish when pressure was applied (P < 0.001). In contrast, the intracellular lactate contents of the pressurized cells were higher than those of nonpressurized cells (P < 0.01). However, the total amount of released lactate and intracellular lactate was lower in the pressurized cells than in nonpressurized cells. These findings demonstrate that a pure pressure stimulus enhances aerobic metabolism in L6 skeletal muscle cells and raise the possibility that elevated intramuscular pressure during muscle activity may be an important factor in stimulating oxidative metabolic responses in skeletal muscles.  相似文献   
88.
A hyperthermophilic archaeal strain, KOD1, isolated from a solfatara on Kodakara Island, Japan, has previously been reported as Pyrococcus sp. KOD1. However, a detailed phylogenetic tree, made possible by the recent accumulation of 16S rRNA sequences of various species in the order Thermococcales, indicated that strain KOD1 is a member of the genus Thermococcus. We performed DNA-DNA hybridization tests against species that displayed high similarity in terms of 16S ribosomal DNA sequences, including Thermococcus peptonophilus and Thermococcus stetteri. Hybridization results and differences in growth characteristics and substrate utilization differentiated strain KOD1 from T. peptonophilus and T. stetteri at the species level. Our results indicate that strain KOD1 represents a new species of Thermococcus, which we designate as Thermococcus kodakaraensis KOD1 sp. nov.  相似文献   
89.
The eukaryotic 20S proteasome is the multifunctional catalytic core of the 26S proteasome, which plays a central role in intracellular protein degradation. Association of the 20S core with a regulatory subcomplex, termed PA700 (also known as the 19S cap), forms the 26S proteasome, which degrades ubiquitinated and nonubiquitinated proteins through an ATP-dependent process. Although proteolytic assistance by this regulatory particle is a general feature of proteasome-dependent turnover, the 20S proteasome itself can degrade some proteins directly, bypassing ubiquitination and PA700, as an alternative mechanism in vitro. The mechanism underlying this pathway is based on the ability of the 20S proteasome to recognize partially unfolded proteins. Here we show that the 20S proteasome recognizes the heat-denatured forms of model proteins such as citrate synthase, malate dehydrogenase. and glyceraldehydes-3-phosphate dehydrogenase, and prevents their aggregation in vitro. This process was not followed by the refolding of these denatured substrates into their native states, whereas PA700 or the 26S proteasome generally promotes their reactivation. These results indicate that the 20S proteasome might play a role in maintaining denatured and misfolded substrates in a soluble state, thereby facilitating their refolding or degradation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号