首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1452篇
  免费   91篇
  国内免费   2篇
  1545篇
  2023年   2篇
  2022年   6篇
  2021年   14篇
  2020年   8篇
  2019年   18篇
  2018年   21篇
  2017年   25篇
  2016年   29篇
  2015年   56篇
  2014年   46篇
  2013年   112篇
  2012年   108篇
  2011年   114篇
  2010年   57篇
  2009年   68篇
  2008年   105篇
  2007年   104篇
  2006年   93篇
  2005年   108篇
  2004年   112篇
  2003年   91篇
  2002年   94篇
  2001年   15篇
  2000年   9篇
  1999年   8篇
  1998年   14篇
  1997年   8篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1954年   3篇
排序方式: 共有1545条查询结果,搜索用时 0 毫秒
61.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades mRNAs containing premature termination codons (PTCs). SMG-1-mediated Upf1 phosphorylation takes place in the decay inducing complex (DECID), which contains a ribosome, release factors, Upf1, SMG-1, an exon junction complex (EJC) and a PTC-mRNA. However, the significance and the consequence of Upf1 phosphorylation remain to be clarified. Here, we demonstrate that SMG-6 binds to a newly identified phosphorylation site in Upf1 at N-terminal threonine 28, whereas the SMG-5:SMG-7 complex binds to phosphorylated serine 1096 of Upf1. In addition, the binding of the SMG-5:SMG-7 complex to Upf1 resulted in the dissociation of the ribosome and release factors from the DECID complex. Importantly, the simultaneous binding of both the SMG-5:SMG-7 complex and SMG-6 to phospho-Upf1 are required for both NMD and Upf1 dissociation from mRNA. Thus, the SMG-1-mediated phosphorylation of Upf1 creates a binding platforms for the SMG-5:SMG-7 complex and for SMG-6, and triggers sequential remodeling of the mRNA surveillance complex for NMD induction and recycling of the ribosome, release factors and NMD factors.  相似文献   
62.
Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles.  相似文献   
63.
Hepatocyte growth factor (HGF) has pleiotropic effects. Up-regulation of HGF activity in vivo may be beneficial. Branched-chain amino acids (BCAAs) are known to modulate various cellular functions. When starved rats received intraperitoneal injections of valine, leucine or isoleucine, only leucine treatment increased both hepatic and circulating levels of HGF in a dose-dependent manner, up to 1.5 and 2.3 times higher, respectively, than in controls. When young growing rats with free access to food were injected with leucine once a day for a week, HGF levels and liver weights were significantly higher than those of control rats. Furthermore, 1 week of leucine treatment of adult rats resulted in elevated serum albumin levels with an increase in HGF levels. Taken together with our previous report showing that leucine stimulates HGF production by hepatic stellate cells in culture, leucine, among BCAAs, may induce an increase in HGF production by the liver in vivo.  相似文献   
64.
The vesicular integral protein of 36 kDa (VIP36) is an intracellular animal lectin that acts as a putative cargo receptor, which recycles between the Golgi and the endoplasmic reticulum. Although it is known that VIP36 interacts with glycoproteins carrying high mannose-type oligosaccharides, detailed analyses of the sugar-binding specificity that discriminates isomeric oligosaccharide structures have not yet been performed. In the present study, we have analyzed, using the frontal affinity chromatography (FAC) method, the sugar-binding properties of a recombinant carbohydrate recognition domain of VIP36 (VIP36-CRD). For this purpose, a pyridylaminated sugar library, consisting of 21 kinds of oligosaccharides, including isomeric structures, was prepared and subjected to FAC analyses. The FAC data have shown that glucosylation and trimming of the D1 mannosyl branch interfere with the binding of VIP36-CRD. VIP36-CRD exhibits a bell-shaped pH dependence of sugar binding with an optimal pH value of approximately 6.5. By inspection of the specificity and optimal pH value of the sugar binding of VIP36 and its subcellular localization, together with the organellar pH, we suggest that VIP36 binds glycoproteins that retain the intact D1 mannosyl branch in the cis-Golgi network and recycles to the endoplasmic reticulum where, due to higher pH, it releases its cargos, thereby contributing to the quality control of glycoproteins.  相似文献   
65.
RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double‐strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase‐2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12–14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high‐efficiency determination of gene functions in this species.  相似文献   
66.
67.
Parkinson's disease (PD) is a major neurodegenerative chronic disease, most likely caused by a complex interplay of genetic and environmental factors. Information on various aspects of PD pathogenesis is rapidly increasing and needs to be efficiently organized, so that the resulting data is available for exploration and analysis. Here we introduce a computationally tractable, comprehensive molecular interaction map of PD. This map integrates pathways implicated in PD pathogenesis such as synaptic and mitochondrial dysfunction, impaired protein degradation, alpha-synuclein pathobiology and neuroinflammation. We also present bioinformatics tools for the analysis, enrichment and annotation of the map, allowing the research community to open new avenues in PD research. The PD map is accessible at http://minerva.uni.lu/pd_map.  相似文献   
68.
Oxolinic acid (OA), a quinolone, inhibits the activity of DNA gyrase composed of GyrA and GyrB and shows antibacterial activity against Burkholderia glumae. Since B. glumae causes bacterial seedling rot and grain rot of rice, both of which are devastating diseases, the emergence of OA-resistant bacteria has important implications on rice cultivation in Japan. Based on the MIC of OA, 35 B. glumae field isolates isolated from rice seedlings grown from OA-treated seeds in Japan were divided into sensitive isolates (OSs; 0.5 μg/ml), moderately resistant isolates (MRs; 50 μg/ml), and highly resistant isolates (HRs; ≥100 μg/ml). Recombination with gyrA of an OS, Pg-10, led MRs and HRs to become OA susceptible, suggesting that gyrA mutations are involved in the OA resistance of field isolates. The amino acid at position 83 in the GyrA of all OSs was Ser, but in all MRs and HRs it was Arg and Ile, respectively. Ser83Arg and Ser83Ile substitutions in the GyrA of an OS, Pg-10, resulted in moderate and high OA resistance, respectively. Moreover, Arg83Ser and Ile83Ser substitutions in the GyrA of MRs and HRs, respectively, resulted in susceptibility to OA. These results suggest that Ser83Arg and Ser83Ile substitutions in GyrA are commonly responsible for resistance to OA in B. glumae field isolates.  相似文献   
69.
The lack of a small-animal model has hampered the analysis of hepatitis C virus (HCV) pathogenesis. The tupaia (Tupaia belangeri), a tree shrew, has shown susceptibility to HCV infection and has been considered a possible candidate for a small experimental model of HCV infection. However, a longitudinal analysis of HCV-infected tupaias has yet to be described. Here, we provide an analysis of HCV pathogenesis during the course of infection in tupaias over a 3-year period. The animals were inoculated with hepatitis C patient serum HCR6 or viral particles reconstituted from full-length cDNA. In either case, inoculation caused mild hepatitis and intermittent viremia during the acute phase of infection. Histological analysis of infected livers revealed that HCV caused chronic hepatitis that worsened in a time-dependent manner. Liver steatosis, cirrhotic nodules, and accompanying tumorigenesis were also detected. To examine whether infectious virus particles were produced in tupaia livers, naive animals were inoculated with sera from HCV-infected tupaias, which had been confirmed positive for HCV RNA. As a result, the recipient animals also displayed mild hepatitis and intermittent viremia. Quasispecies were also observed in the NS5A region, signaling phylogenic lineage from the original inoculating sequence. Taken together, these data suggest that the tupaia is a practical animal model for experimental studies of HCV infection.Hepatitis C virus (HCV) is a small enveloped virus that causes chronic hepatitis worldwide (32). HCV belongs to the genus Hepacivirus of the family Flaviviridae. Its genome comprises 9.6 kb of single-stranded RNA of positive polarity flanked by highly conserved untranslated regions at both the 5′ and 3′ ends (4, 27, 29). The 5′ untranslated region harbors an internal ribosomal entry site (29) that initiates translation of a single open reading frame encoding a large polyprotein comprising about 3,010 amino acids (35). The encoded polyprotein is co- and posttranslationally processed into 10 individual viral proteins (15).In most cases of human infection, HCV is highly potent and establishes lifelong persistent infection, which progressively leads to chronic hepatitis, liver steatosis, cirrhosis, and hepatocellular carcinoma (9, 16, 21). The most effective therapy for treatment of HCV infection is administration of pegylated interferon combined with ribavirin. However, the combination therapy is an arduous regimen for patients; furthermore, HCV genotype 1b does not respond efficiently (19). The prevailing scientific opinion is that a more viable option than interferon treatment is needed.The chimpanzee is the only validated animal model for in vivo studies of HCV infection, and it is capable of reproducing most aspects of human infection (5, 18, 23, 28, 35, 36). The chimpanzee is also the only validated animal for testing the authenticity and infectivity of cloned viral sequences (8, 14, 35, 36). However, chimpanzees are relatively rare and expensive experimental subjects. Cross-species transmission from infected chimpanzees to other nonhuman primates has been tested but has proven unsuccessful for all species evaluated (1).The tupaia (Tupaia belangeri), a tree shrew, is a small nonprimate mammal indigenous to certain areas of Southeast Asia (6). It is susceptible to infection with a wide range of human-pathogenic viruses, including hepatitis B viruses (13, 20, 31), and appears to be permissive for HCV infection (33, 34). In an initial report, approximately one-third of inoculated animals exhibited acute, transient infection, although none developed the high-titer sustained viremia characteristic of infection in humans and chimpanzees (33). The short duration of follow-up precluded any observation of liver pathology. In addition to the putative in vivo model, cultured primary hepatocytes from tupaias can be infected with HCV, leading to de novo synthesis of HCV RNA (37). These reports strongly support tupaias as a valid model for experimental studies of HCV infection. However, longitudinal analyses evaluating the clinical development and pathology of HCV-infected tupaias have yet to be examined. In the present study, we describe the clinical development and pathology of HCV-infected tupaias over an approximately 3-year time course.  相似文献   
70.
It is known that the nervous system significantly attenuates systemic inflammatory responses through the parasympathetic nervous system. Furthermore, it has been reported that the alpha7 subunit of a nicotinic acetylcholine receptor is required for a cholinergic inhibition against cytokine synthesis in a macrophage. As antigen-presenting cells (APCs) play a central role in the generation of primary T cell responses and the maintenance of immunity, in this study, we investigated the expression level of nicotinic receptors of a p53-deficient APC cell line (JawsII) derived from a mouse bone marrow. We showed that stimulation of the JawsII cells with lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNF-α) led increase of CD80 and CD86 expression while diminishment of the surface nicotinic receptor. On the other hand, stimulation of nicotinic receptor had no effect on these phenomena. Furthermore, we examined the ability of the cells to release cytokine when stimulated with both nicotine and LPS and showed that the stimulation with LPS augmented the secretion of IL-1a, IL-1b, IL-6, and TNF-α. These results suggested that nicotinic stimulation had no effect on the diminishment of alpha7 nicotinic acetylcholine receptor on JawsII cells by LPS stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号