首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1414篇
  免费   84篇
  国内免费   2篇
  1500篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   7篇
  2019年   18篇
  2018年   20篇
  2017年   25篇
  2016年   29篇
  2015年   50篇
  2014年   45篇
  2013年   112篇
  2012年   106篇
  2011年   111篇
  2010年   54篇
  2009年   63篇
  2008年   104篇
  2007年   94篇
  2006年   92篇
  2005年   106篇
  2004年   109篇
  2003年   88篇
  2002年   94篇
  2001年   14篇
  2000年   7篇
  1999年   8篇
  1998年   14篇
  1997年   8篇
  1996年   12篇
  1995年   10篇
  1994年   13篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   3篇
  1983年   5篇
  1982年   8篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1973年   3篇
  1969年   1篇
  1954年   3篇
排序方式: 共有1500条查询结果,搜索用时 15 毫秒
51.
The present study shows that the H19 and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, the H19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated with Igf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of the H19 and Igf2r genes by trans-acting mechanisms.  相似文献   
52.
The spindle pole body (SPB) of Schizosaccharomyces pombe is required for assembly of the forespore membrane (FSM) during meiosis. Before de novo biogenesis of the FSM, the meiotic SPB forms outer plaques, an event referred to as SPB modification. A constitutive SPB component, Spo15, plays an indispensable role in SPB modification and sporulation. Here, we analyzed two sporulation-specific genes, spo13(+) and spo2(+), which are not required for progression of meiotic nuclear divisions, but are essential for sporulation. Spo13 is a 16-kDa coiled-coil protein, and Spo2 is a 15-kDa nonconserved protein. Both Spo13 and Spo2 specifically associated with the meiotic SPB. The respective deletion mutants are viable, but defective in SPB modification and in the onset of FSM formation. Spo13 and Spo2 localized on the cytoplasmic side of the SPB in close contact with the nascent FSM. Localization of Spo13 to the SPB was dependent on Spo15 and Spo2; that of Spo2 depended only on Spo15, suggesting that their recruitment to the SPB is strictly controlled. Spo2 physically associated with both Spo15 and Spo13, but Spo13 and Spo15 did not interact directly. Taken together, these observations indicate that Spo2 is recruited to the SPB during meiosis and then assists in the localization of Spo13 to the outer surface of the SPB.  相似文献   
53.
Protein kinase C (PKC) plays a prominent role in immune signaling. To elucidate the signal transduction in a respiratory burst and isoform-specific function of PKC during FcgammaR-mediated phagocytosis, we used live, digital fluorescence imaging of mouse microglial cells expressing GFP-tagged molecules. betaI PKC, epsilonPKC, and diacylglycerol kinase (DGK) beta dynamically and transiently accumulated around IgG-opsonized beads (BIgG). Moreover, the accumulation of p47(phox), an essential cytosolic component of NADPH oxidase and a substrate for betaI PKC, at the phagosomal cup/phagosome was apparent during BIgG ingestion. Superoxide (O(2)(-)) production was profoundly inhibited by G?6976, a cPKC inhibitor, and dramatically increased by the DGK inhibitor, R59949. Ultrastructural analysis revealed that BIgG induced O(2)(-) production at the phagosome but not at the intracellular granules. We conclude that activation/accumulation of betaI PKC is involved in O(2)(-) production, and that O(2)(-) production is primarily initiated at the phagosomal cup/phagosome. This study also suggests that DGKbeta plays a prominent role in regulation of O(2)(-) production during FcgammaR-mediated phagocytosis.  相似文献   
54.
A cDNA clone for copper/zinc-superoxide dismutase (Cu/Zn-SOD)was isolated from spinach (Spinacia oleracea L.) leaves. Itsnucleotide sequence showed that it codes for a precursor polypeptideof 222 amino acids, including the NH2-terminal 68-residue extensionwhich corresponds to a plastidic transit peptide. Northern hybridization,using plastidic and cytosolic Cu/Zn-SOD cDNAs as the probes,revealed that these two genes are differentially expressed inthe roots and leaves of spinach. 1Present address: Department of Biochemistry and Microbiology,Cook College, Rutgers University New Brunswick, NJ 08903-0231,U.S.A.  相似文献   
55.
The genome of influenza A virus consists of eight single-strand negative-sense RNA segments, each comprised of a coding region and a noncoding region. The noncoding region of the NS segment is thought to provide the signal for packaging; however, we recently showed that the coding regions located at both ends of the hemagglutinin and neuraminidase segments were important for their incorporation into virions. In an effort to improve our understanding of the mechanism of influenza virus genome packaging, we sought to identify the regions of NS viral RNA (vRNA) that are required for its efficient incorporation into virions. Deletion analysis showed that the first 30 nucleotides of the 3' coding region are critical for efficient NS vRNA incorporation and that deletion of the 3' segment-specific noncoding region drastically reduces NS vRNA incorporation into virions. Furthermore, silent mutations in the first 30 nucleotides of the 3' NS coding region reduced the incorporation efficiency of the NS segment and affected virus replication. These results suggested that segment-specific noncoding regions together with adjacent coding regions (especially at the 3' end) form a structure that is required for efficient influenza A virus vRNA packaging.  相似文献   
56.
We studied how value for instrumental action is discounted by predicted effort and delay. The monkeys were trained to perform instrumental trials that required a bar release when a visual target changed from red-to-green. There were two trial conditions. In delay trials, after the monkeys performed one instrumental trial correctly a reward was delivered 0–7 seconds later. In work trials, the monkeys had to perform 0, 1, or 2 additional instrumental trials to obtain a reward. The lengths of trials in delay matched the time it took to complete work trials. The length of delay or number of trials was indicated by a visual cue presented throughout the trial. Our hypothesis was that the monkeys would all show temporal discounting of reward in the delay trials, and that in the work trials the monkeys’ performance might reflect an additional cost due to working. The error rate increased linearly as remaining cost increased for all 8 monkeys. For 4 monkeys the error rate was significantly larger in work trials than in delay trials (effort sensitive monkeys). For the other 4 monkeys there was no significant difference in error rate (effort insensitive monkeys). Since the error rate has an inverse relation with value for action, these results suggest that value is discounted hyperbolically by effort as well as by delay. Error rates generally increased as the testing sessions progressed and the total reward accumulated (i.e., effect of reward devaluation). The relative impact of delay and effort on error rates was reasonably stable within subjects. Thus, within the monkey population there seems to be a significant dichotomy in the sensitivity governing whether working is more costly than waiting, possibly arising from a constitutional or genetic trait.  相似文献   
57.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
58.
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that detects and degrades mRNAs containing premature termination codons (PTCs). SMG-1-mediated Upf1 phosphorylation takes place in the decay inducing complex (DECID), which contains a ribosome, release factors, Upf1, SMG-1, an exon junction complex (EJC) and a PTC-mRNA. However, the significance and the consequence of Upf1 phosphorylation remain to be clarified. Here, we demonstrate that SMG-6 binds to a newly identified phosphorylation site in Upf1 at N-terminal threonine 28, whereas the SMG-5:SMG-7 complex binds to phosphorylated serine 1096 of Upf1. In addition, the binding of the SMG-5:SMG-7 complex to Upf1 resulted in the dissociation of the ribosome and release factors from the DECID complex. Importantly, the simultaneous binding of both the SMG-5:SMG-7 complex and SMG-6 to phospho-Upf1 are required for both NMD and Upf1 dissociation from mRNA. Thus, the SMG-1-mediated phosphorylation of Upf1 creates a binding platforms for the SMG-5:SMG-7 complex and for SMG-6, and triggers sequential remodeling of the mRNA surveillance complex for NMD induction and recycling of the ribosome, release factors and NMD factors.  相似文献   
59.
Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles.  相似文献   
60.
Hepatocyte growth factor (HGF) has pleiotropic effects. Up-regulation of HGF activity in vivo may be beneficial. Branched-chain amino acids (BCAAs) are known to modulate various cellular functions. When starved rats received intraperitoneal injections of valine, leucine or isoleucine, only leucine treatment increased both hepatic and circulating levels of HGF in a dose-dependent manner, up to 1.5 and 2.3 times higher, respectively, than in controls. When young growing rats with free access to food were injected with leucine once a day for a week, HGF levels and liver weights were significantly higher than those of control rats. Furthermore, 1 week of leucine treatment of adult rats resulted in elevated serum albumin levels with an increase in HGF levels. Taken together with our previous report showing that leucine stimulates HGF production by hepatic stellate cells in culture, leucine, among BCAAs, may induce an increase in HGF production by the liver in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号