首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5223篇
  免费   322篇
  5545篇
  2022年   27篇
  2021年   54篇
  2020年   32篇
  2019年   39篇
  2018年   61篇
  2017年   48篇
  2016年   75篇
  2015年   109篇
  2014年   154篇
  2013年   268篇
  2012年   246篇
  2011年   245篇
  2010年   156篇
  2009年   151篇
  2008年   218篇
  2007年   265篇
  2006年   249篇
  2005年   242篇
  2004年   271篇
  2003年   257篇
  2002年   240篇
  2001年   193篇
  2000年   211篇
  1999年   161篇
  1998年   76篇
  1997年   76篇
  1996年   63篇
  1995年   50篇
  1994年   44篇
  1993年   34篇
  1992年   84篇
  1991年   109篇
  1990年   100篇
  1989年   96篇
  1988年   82篇
  1987年   83篇
  1986年   80篇
  1985年   79篇
  1984年   61篇
  1983年   64篇
  1982年   35篇
  1981年   24篇
  1979年   42篇
  1978年   27篇
  1977年   31篇
  1976年   22篇
  1975年   22篇
  1974年   24篇
  1973年   30篇
  1970年   17篇
排序方式: 共有5545条查询结果,搜索用时 15 毫秒
971.
Mouse urine contains major urinary proteins (MUPs) that are not found in human urine. Therefore, even healthy mice exhibit proteinuria, unlike healthy humans, making it challenging to use mice as models for human diseases. It was also unknown whether dipsticks for urinalysis could measure protein concentrations precisely in urine containing MUPs. To resolve these problems, we produced MUP-knockout (Mup-KO) mice by removing the Mup gene cluster using Cas9 proteins and two guide RNAs and characterized the urinary proteins in these mice. We measured the urinary protein concentrations in Mup-KO and wild-type mice using a protein quantitation kit and dipsticks. We also examined the urinary protein composition using SDS-PAGE and two-dimensional electrophoresis (2DE). The urinary protein concentration was significantly lower (P<0.001) in Mup-KO mice (17.9 ± 1.8 mg/dl, mean ± SD, n=3) than in wild-type mice (73.7 ± 8.2 mg/dl, n=3). This difference was not reflected in the dipstick values, perhaps due to the low sensitivity to MUPs. This suggests that dipsticks have limited ability to measure changes in MUPs with precision. SDS-PAGE and 2DE confirmed that Mup-KO mice, like humans, had no MUPs in their urine, whereas wild-type mice had abundant MUPs in their urine. The absence of the masking effect of MUPs in 2DE would enable clear comparisons of urinary proteins, especially low-molecular-weight proteins. Thus, Mup-KO mice may provide a useful model for human urinalysis.  相似文献   
972.
The ocean is undergoing warming and acidification. Thermal tolerance is affected both by evolutionary adaptation and developmental plasticity. Yet, thermal tolerance in animals adapted to simultaneous warming and acidification is unknown. We experimentally evolved the ubiquitous copepod Acartia tonsa to future combined ocean warming and acidification conditions (OWA approx. 22°C, 2000 µatm CO2) and then compared its thermal tolerance relative to ambient conditions (AM approx. 18°C, 400 µatm CO2). The OWA and AM treatments were reciprocally transplanted after 65 generations to assess effects of developmental conditions on thermal tolerance and potential costs of adaptation. Treatments transplanted from OWA to AM conditions were assessed at the F1 and F9 generations following transplant. Adaptation to warming and acidification, paradoxically, reduces both thermal tolerance and phenotypic plasticity. These costs of adaptation to combined warming and acidification may limit future population resilience.  相似文献   
973.
974.
Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics. Our analyses reveal that phenotypic plasticity tends to stabilize population dynamics more strongly than rapid evolution. It is therefore important to know the mechanism by which phenotypic variation is generated for predicting the dynamics of rapidly adapting populations. We next examine an advantage of a phenotypically plastic prey genotype over the polymorphism of specialist prey genotypes. Numerical analyses reveal that the plastic genotype, if there is a small cost for maintaining it, cannot coexist with the pairs of specialist counterparts unless the system has a limit cycle. Furthermore, for the plastic genotype to replace specialist genotypes, a forced environmental fluctuation is critical in a broad parameter range. When these results are combined, the plastic genotype enjoys an advantage with population oscillations, but plasticity tends to lose its advantage by stabilizing the oscillations. This dilemma leads to an interesting intermittent limit cycle with the changing frequency of phenotypic plasticity.  相似文献   
975.
976.
977.
Fujii N  Kawaguchi T  Sasaki H  Fujii N 《Biochemistry》2011,50(40):8628-8635
The lens proteins are composed of α-, β-, and γ-crystallins that interact with each other to maintain the transparency and refractive power of the lens. Because the lens crystallins are long-lived proteins, they undergo various post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation. In βB2-crystallin, which is the most abundant β-crystallin, the deamidation of asparagine and glutamine residues has been reported. Here, we found that the aspartyl (Asp) residue at position 4 of βB2-crystallin in the lenses of elderly human individuals undergoes a significant degree of inversion and isomerization to the biologically uncommon residue D-β-Asp. Surprisingly, the D/L ratio of β-Asp at position 4 in βB2-crystallin from elderly donors (67-77 year old) was 0.88-3.21. A D/L ratio of amino acids greater than 1.0 is defined as an inversion of configuration from the L- to D-form, rather than a racemization. These extremely high D/L ratios are equivalent to those of Asp-58 and Asp-151 (D/L ratio: 3.1 for Asp-58 and 5.7 for Asp-151) in αA-crystallin from elderly donors (~80 year old) as reported previously. Initially, we identified specific Asp residues in the β-crystallin family of proteins that undergo a high degree of inversion. These results show that the isomerization and inversion of Asp residues occurs both in the α- and β-crystallins of the lens. Inversion of these Asp residues directly affects the higher order structure of the protein. Hence, this modification may change crystallin-crystallin interactions and disrupt the function of crystallins in the lens.  相似文献   
978.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   
979.
G-protein-coupled receptors transmit stimuli (light, taste, hormone, neurotransmitter, etc.) to the intracellular signaling systems, and rhodopsin (Rh) is the most-studied G-protein-coupled receptor. Rh possesses an 11-cis retinal as the chromophore, and 11-cis to all-trans photoisomerization leads to the protein structural changes in the cytoplasmic loops to activate G-protein. Microbial rhodopsins are similar heptahelical membrane proteins that function as bacterial sensors, light-driven ion-pumps, or light-gated channels. Microbial rhodopsins possess an all-trans retinal, and all-trans to 13-cis photoisomerization triggers protein structural changes for each function. Despite these similarities, there is no sequence homology between visual and microbial rhodopsins, and microbial rhodopsins do not activate G-proteins. However, it was reported that bacteriorhodopsin (BR) chimeras containing the third cytoplasmic loop of bovine Rh are able to activate G-protein, suggesting a common mechanism of protein structural changes. Here we design chimeric proteins for Natronomonas pharaonis sensory rhodopsin II (SRII, also called pharaonis phoborhodopsin), which has a two-orders-of-magnitude slower photocycle than BR. Light-dependent transducin activation was observed for most of the nine SRII chimeras containing the third cytoplasmic loop of bovine Rh (from Y223, G224, Q225 to T251, R252, and M253), but the activation level was 30,000–140,000 times lower than that of bovine Rh. The BR chimera, BR/Rh223-253, activates a G-protein transducin, whereas the activation level was 37,000 times lower than that of bovine Rh. We interpret the low activation by the chimeric proteins as reasonable, because bovine Rh must have been optimized for activating a G-protein transducin during its evolution. On the other hand, similar activation level of the SRII and BR chimeras suggests that the lifetime of the M intermediates is not the simple determinant of activation, because SRII chimeras have two-orders-of-magnitude's slower photocycle than the BR chimera. Activation mechanism of visual and microbial rhodopsins is discussed on the basis of these results.  相似文献   
980.
In this study, we attempted to detect Babesia gibsoni in blood smears and formalin-fixed, paraffin-embedded tissues obtained from B. gibsoni-infected dogs using in situ hybridization. Using a digoxigenin-conjugated deoxyribonucleic acid (DNA) probe, both intraerythrocytic and exoerythrocytic parasites in the culture could be specifically stained in blood smears fixed with 4% phosphate-buffered paraformaldehyde. This indicated that genomic DNA extracted from the parasites could be detected using in situ hybridization. Moreover, the parasite could be specifically stained in paraffin-embedded spleen, lymph node, and kidney sections using in situ hybridization. Infected erythrocytes in blood vessels in the spleen and kidney, hemosiderin-laden macrophages in the spleen, and phagocytized erythrocytes, which seemed to be infected with the parasites, in lymph nodes were also specifically stained. This suggests that in situ hybridization can be utilized to investigate both the life cycle of B. gibsoni and the pathological condition of canine babesiosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号