首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2732篇
  免费   149篇
  2022年   7篇
  2021年   21篇
  2020年   21篇
  2019年   18篇
  2018年   33篇
  2017年   33篇
  2016年   54篇
  2015年   54篇
  2014年   82篇
  2013年   134篇
  2012年   134篇
  2011年   129篇
  2010年   84篇
  2009年   93篇
  2008年   157篇
  2007年   157篇
  2006年   155篇
  2005年   172篇
  2004年   189篇
  2003年   135篇
  2002年   154篇
  2001年   99篇
  2000年   88篇
  1999年   69篇
  1998年   23篇
  1997年   34篇
  1996年   19篇
  1995年   18篇
  1994年   17篇
  1993年   26篇
  1992年   61篇
  1991年   40篇
  1990年   35篇
  1989年   31篇
  1988年   27篇
  1987年   27篇
  1986年   33篇
  1985年   30篇
  1984年   20篇
  1983年   14篇
  1982年   12篇
  1981年   12篇
  1980年   11篇
  1979年   19篇
  1978年   17篇
  1976年   10篇
  1975年   12篇
  1974年   9篇
  1972年   9篇
  1968年   10篇
排序方式: 共有2881条查询结果,搜索用时 796 毫秒
941.
Anorexia nervosa (AN) is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25), including restrictive (ANR, n = 14) and binge-eating (ANBP, n = 11) subtypes, with those of age-matched healthy female controls (n = 21) using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA–targeted RT–quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients.  相似文献   
942.
Parental care among salamanders is typically provided by females. A rare case of parental care by male salamanders appears to occur in Cryptobranchidae. Yet, paternal behaviors have rarely been reported from natural populations of any Cryptobranchid salamanders, and their adaptive significance is poorly understood. The present study aimed to examine paternal care behaviors in a fully aquatic Japanese giant salamander (Andrias japonicus) in situ. At the beginning of the summer breeding season, large males, called den-masters, occupy burrows along stream banks for breeding and nesting. We videotaped post-breeding behaviors of two den-masters that stayed with the eggs, one in a natural and the other in an artificial nest in natural streams. We identified three behaviors, tail fanning, agitating and egg eating, to be parental care. Tail fanning provides oxygenated water for the eggs. We found that the den-master in the artificial nest, where dissolved oxygen level was lower, displayed tail fanning more frequently. Agitating the eggs with its head and body likely prevents yolk adhesions. The den-masters selectively ate whiter eggs that appeared to be dead or infected with water mold. This behavior, which we termed hygienic filial cannibalism, likely prevents water mold from spreading over healthy eggs. Digital video images relating to this article are available at http://www.momo-p.com/showdetail-e.php?movieid=momo140906aj01a, http://www.momo-p.com/showdetail-e.php?movieid=momo140906aj02a, http://www.momo-p.com/showdetail-e.php?movieid=momo140906aj03a and http://www.momo-p.com/showdetail-e.php?movieid=momo140906aj04a.  相似文献   
943.
944.

Background

It is widely believed that contact with the natural environment can improve physical and mental health. Urban green spaces may provide city residents with these benefits; however, there is a lack of empirical field research on the health benefits of urban parks.

Methods

This field experiment was performed in May. Seventeen males aged 21.2 ± 1.7 years (mean ± standard deviation) were instructed to walk predetermined 15-minute courses in an urban park and a nearby city area (control). Heart rate and heart rate variability (HRV) were measured to assess physiological responses. The semantic differential (SD) method, Profile of Mood States (POMS), and State-Trait Anxiety Inventory (STAI) were used to measure psychological responses.

Results

Heart rate was significantly lower while walking in the urban park than while walking in the city street. Furthermore, the urban park walk led to higher parasympathetic nervous activity and lower sympathetic nervous activity compared with the walk through the city street. Subjective evaluations were generally in accordance with physiological reactions, and significantly higher scores were observed for the ‘comfortable’, ‘natural’, and ‘relaxed’ parameters following the urban park walk. After the urban park walk, the score for the ‘vigor’ subscale of the POMS was significantly higher, whereas that for negative feelings such as ‘tension-anxiety’ and ‘fatigue’ was significantly lower. The score for the anxiety dimension of the STAI was also significantly lower after the urban park walk.

Conclusions

Physiological and psychological results from this field experiment provide evidence for the physiological and psychological benefits of urban green spaces. A brief spring-time walk in an urban park shifted sympathetic/parasympathetic balance and improved mood state.  相似文献   
945.
Chloroplasts originated from cyanobacteria through endosymbiosis. The original cyanobacterial endosymbiont evolved to adapt to the biochemically rich intracellular environment of the host cell while maintaining its photosynthetic function; however, no such process has been experimentally demonstrated. Here, we show the adaptation of a model cyanobacterium, Synechocystis sp. PCC 6803, to a biochemically rich environment by experimental evolution. Synechocystis sp. PCC 6803 does not grow in a biochemically rich, chemically defined medium because several amino acids are toxic to the cells at approximately 1 mM. We cultured the cyanobacteria in media with the toxic amino acids at 0.1 mM, then serially transferred the culture, gradually increasing the concentration of the toxic amino acids. The cells evolved to show approximately the same specific growth rate in media with 0 and 1 mM of the toxic amino acid in approximately 84 generations and evolved to grow faster in the media with 1 mM than in the media with 0 mM in approximately 181 generations. We did not detect a statistically significant decrease in the autotrophic growth of the evolved strain in an inorganic medium, indicating the maintenance of the photosynthetic function. Whole-genome resequencing revealed changes in the genes related to the cell membrane and the carboxysome. Moreover, we quantitatively analyzed the evolutionary changes by using simple mathematical models, which evaluated the evolution as an increase in the half-maximal inhibitory concentration (IC50) and estimated quantitative characteristics of the evolutionary process. Our results clearly demonstrate not only the potential of a model cyanobacterium to adapt to a biochemically rich environment without a significant decrease in photosynthetic function but also the properties of its evolutionary process, which sheds light of the evolution of chloroplasts at the initial stage.  相似文献   
946.
A stable salt-tolerant cell-suspension culture of Alluaudiopsis marnieriana was established, and intracellular compounds that accumulated under salt-stress conditions were investigated. HPLC/MS, and NMR analyses indicated that enhanced accumulation of coniferin was found during the growth phase in medium containing 150 mM NaCl. Coniferin or its derivatives may play an important role in salt-tolerance mechanisms in this plant.  相似文献   
947.
Arabidopsis thaliana Dicer-like 4 (DCL4) produces 21-nt small interfering RNAs from both endogenous and exogenous double-stranded RNAs (dsRNAs), and it interacts with DRB4, a dsRNA-binding protein, in vivo and in vitro. However, the role of DRB4 in DCL4 activity remains unclear because the dsRNA-cleaving activity of DCL4 has not been characterized biochemically. In this study, we biochemically characterize DCL4's Dicer activity and establish that DRB4 is required for this activity in vitro. Crude extracts from Arabidopsis seedlings cleave long dsRNAs into 21-nt small RNAs in a DCL4/DRB4-dependent manner. Immunoaffinity-purified DCL4 complexes produce 21-nt small RNAs from long dsRNA, and these complexes have biochemical properties similar to those of known Dicer family proteins. The DCL4 complexes purified from drb4-1 do not cleave dsRNA, and the addition of recombinant DRB4 to drb4-1 complexes specifically recovers the 21-nt small RNA generation. These results reveal that DCL4 requires DRB4 to cleave long dsRNA into 21-nt small RNAs in vitro. Amino acid substitutions in conserved dsRNA-binding domains (dsRBDs) of DRB4 impair three activities: binding to dsRNA, interacting with DCL4, and facilitating DCL4 activity. These observations indicate that the dsRBDs are critical for DRB4 function. Our biochemical approach and observations clearly show that DRB4 is specifically required for DCL4 activity in vitro.  相似文献   
948.
ER-to-Golgi protein transport is carried out by transport vesicles which are formed at the ER-exit sites with recruitment of cytoplasmic coat proteins. Vesicle formation is initiated by assembly of the small G protein (Sar1) onto the ER membrane. Sar1 assembly onto the ER membrane is suppressed by protein kinase inhibitor H89, suggesting participation of H89-sensitive kinase in this process. The present study identified an effector of H89-sensitive kinase by LC-MS PMF analysis combined with 1D- and 2D-PAGE autoradiography, and examined the changes on the effector and Sar1 translocation induced by H89. H89 significantly suppressed the phosphorylation of 55 kDa protein with dosage dependency, and phosphorylation of 55 kDa, pI 5.5 protein spot in 2-D-autoradiography was drastically diminished by H89. LC-MS PMF analysis showed that the protein spot was β-tubulin. H89 significantly suppressed Sar1 translocation onto the ER. These findings indicate that β-tubulin is one of downstream effectors of H89-sensitive kinase, and that suppression of ER-coupled β-tubulin phosphorylation decreases Sar1 translocation onto the ER, suggesting that phosphorylation of β-tubulin regulates Sar1 translocation.  相似文献   
949.
Aims: This study aimed at determining whether oral administration of a probiotic strain, Lactobacillus casei strain Shirota (LcS), can improve insulin resistance, which is the underlying cause of obesity‐associated metabolic abnormalities, in diet‐induced obesity (DIO) mice. Methods and Results: DIO mice were fed a high‐fat diet without or with 0·05% LcS for 4 weeks and then subjected to an insulin tolerance test (ITT) or oral glucose tolerance test (OGTT). Oral administration of LcS not only accelerated the reduction in plasma glucose levels during the ITT, but also reduced the elevation of plasma glucose levels during the OGTT. In addition, plasma levels of lipopolysaccharide‐binding protein (LBP), which is a marker of endotoxaemia, were augmented in the murine models of obese DIO, ob/ob, db/db and KK‐Ay and compared to those of lean mice. LcS treatment suppressed the elevation of plasma LBP levels in DIO mice, but did not affect intra‐abdominal fat weight. Conclusions: LcS improves insulin resistance and glucose intolerance in DIO mice. The reduction in endotoxaemia, but not intra‐abdominal fat, may contribute to the beneficial effects of LcS. Significance and Impact of the Study: This study suggests that LcS has the potential to prevent obesity‐associated metabolic abnormalities by improving insulin resistance.  相似文献   
950.
Tsuda K  Ito Y  Sato Y  Kurata N 《The Plant cell》2011,23(12):4368-4381
Self-maintenance of the shoot apical meristem (SAM), from which aerial organs are formed throughout the life cycle, is crucial in plant development. Class I Knotted1-like homeobox (KNOX) genes restrict cell differentiation and play an indispensable role in maintaining the SAM. However, the mechanism that positively regulates their expression is unknown. Here, we show that expression of a rice (Oryza sativa) KNOX gene, Oryza sativa homeobox1 (OSH1), is positively regulated by direct autoregulation. Interestingly, loss-of-function mutants of OSH1 lose the SAM just after germination but can be rescued to grow until reproductive development when they are regenerated from callus. Double mutants of osh1 and d6, a loss-of-function mutant of OSH15, fail to establish the SAM both in embryogenesis and regeneration. Expression analyses in these mutants reveal that KNOX gene expression is positively regulated by the phytohormone cytokinin and by KNOX genes themselves. We demonstrate that OSH1 directly binds to five KNOX loci, including OSH1 and OSH15, through evolutionarily conserved cis-elements and that the positive autoregulation of OSH1 is indispensable for its own expression and SAM maintenance. Thus, the maintenance of the indeterminate state mediated by positive autoregulation of a KNOX gene is an indispensable mechanism of self-maintenance of the SAM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号