首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2718篇
  免费   164篇
  2023年   23篇
  2022年   59篇
  2021年   89篇
  2020年   48篇
  2019年   67篇
  2018年   67篇
  2017年   71篇
  2016年   116篇
  2015年   157篇
  2014年   168篇
  2013年   210篇
  2012年   231篇
  2011年   243篇
  2010年   121篇
  2009年   103篇
  2008年   193篇
  2007年   172篇
  2006年   141篇
  2005年   128篇
  2004年   127篇
  2003年   88篇
  2002年   111篇
  2001年   14篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   17篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   4篇
  1985年   3篇
  1981年   4篇
  1980年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有2882条查询结果,搜索用时 15 毫秒
991.
A series of Sodium 4-[(4-butoxyphenyl)thio]-2'-substituted-1,1'-biphenyl-3- sulfonates were identified as functional sphingosine-1-phosphate (S1P) antagonists with selectivity for the S1P(1) receptor subtype starting from chemical lead 2, which was found while screening our in-house compound library. We performed chemical modifications on each regional structure of compound 2, for example, on the three ring compartments, the benzyl substituents, and the long alkyl chain part. The introduction of a biphenyl skeletal structure and the installation of a hydroxyl group onto the terminal carbon in the side-chain region resulted in the potent derivative 35c, which showed >500-fold more potent S1P(1) inhibitory activity than lead compound 2. We report herein the synthesis and structure-activity relationships of structurally novel S1P(1) receptor antagonists.  相似文献   
992.
The microbial community structure and spatial distribution of microorganisms and their in situ activities in anaerobic granules were investigated by 16S rRNA gene-based molecular techniques and microsensors for CH4, H2, pH, and the oxidation-reduction potential (ORP). The 16S rRNA gene-cloning analysis revealed that the clones related to the phyla Alphaproteobacteria (detection frequency, 51%), Firmicutes (20%), Chloroflexi (9%), and Betaproteobacteria (8%) dominated the bacterial clone library, and the predominant clones in the archaeal clone library were affiliated with Methanosaeta (73%). In situ hybridization with oligonucleotide probes at the phylum level revealed that these microorganisms were numerically abundant in the granule. A layered structure of microorganisms was found in the granule, where Chloroflexi and Betaproteobacteria were present in the outer shell of the granule, Firmicutes were found in the middle layer, and aceticlastic Archaea were restricted to the inner layer. Microsensor measurements for CH4, H2, pH, and ORP revealed that acid and H2 production occurred in the upper part of the granule, below which H2 consumption and CH4 production were detected. Direct comparison of the in situ activity distribution with the spatial distribution of the microorganisms implied that Chloroflexi contributed to the degradation of complex organic compounds in the outermost layer, H2 was produced mainly by Firmicutes in the middle layer, and Methanosaeta produced CH4 in the inner layer. We determined the effective diffusion coefficient for H2 in the anaerobic granules to be 2.66 × 10−5 cm2 s−1, which was 57% in water.  相似文献   
993.
To analyze cell to cell interaction effects on cell differentiation, we developed a new triple staining method for double in situ hybridization with cell lineage tracing in whole-mount Xenopus embryos. The method provides high color contrast views, and also enabled us to examine inside the embryos. Wild-type embryos whose blastomere(s) had been injected with a cell lineage tracer were cultured, fixed, hemisectioned when necessary, and first served for the double in situ hybridization, with two sequential chromogenic reactions. They were postfixed, and the labeled cells were retraced immunohistochemically. Finally, the pigment of the embryos was bleached to obtain a clear view. We applied this method to a blastomere transplantation experiment to examine whether the spatial gene expression patterns along the anteroposterior axis can be induced by cell to cell interactions. The presumptive organizer of a 32-cell embryo was replaced by the labeled presumptive epidermis of another synchronous embryo. The resultant triple-stained late gastrula showed quite similar anteroposterior expression patterns of gsc and Xbra to those of a normal embryo in the axial mesoderm derived from the transplanted presumptive epidermis, indicating that cell to cell interactions had induced these patterns.  相似文献   
994.
The phenomenon of 'epimorphic regeneration', a complete reformation of lost tissues and organs from adult differentiated cells, has been fascinating many biologists for many years. While most vertebrate species including humans do not have a remarkable ability for regeneration, the lower vertebrates such as urodeles and fish have exceptionally high regeneration abilities. In particular, the teleost fish has a high ability to regenerate a variety of tissues and organs including scales, muscles, spinal cord and heart among vertebrate species. Hence, an understanding of the regeneration mechanism in teleosts will provide an essential knowledge base for rational approaches to tissue and organ regeneration in mammals. In the last decade, small teleost fish such as the zebrafish and medaka have emerged as powerful animal models in which a variety of developmental, genetic and molecular approaches are applicable. In addition, rapid progress in the development of genome resources such as expressed sequence tags and genome sequences has accelerated the speed of the molecular analysis of regeneration. This review summarizes the current status of our understanding of the cellular and molecular basis of regeneration, particularly that regarding fish fins.  相似文献   
995.
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This ‘centromere breathing’ presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
996.
Small GTPases of the Rho family, Rho, Rac, and Cdc42, are critical regulators of the changes in the actin cytoskeleton. Rho GTPases are typically activated by Dbl-homology (DH)-domain-containing guanine nucleotide exchange factors (GEFs). Recent genetic and biochemical studies revealed a new type of GEF for the Rho GTPases. This family is composed of 11 genes, designated as Dock1 to Dock11, and is structurally divided into four classes Dock-A, -B, -C, and -D. Dock-A and -B subfamilies are typically GEFs specific for Rac1, while the Dock-D subfamily is specific for Cdc42. Here we show that Dock6, a member of the Dock-C subfamily, exchanges GDP for GTP for Rac1 and Cdc42 in vitro and in vivo. Furthermore, we find that, in mouse N1E-115 neuroblastoma cells, expression of Dock6 is increased following differentiation. Transfection of the catalytic Dock Homology Region-2 (DHR-2) domain of Dock6 promotes neurite outgrowth mediated by Rac1 and Cdc42. Conversely, knockdown of endogenous Dock6 by small interference RNA reduces activation of Rac1 and Cdc42 and neurite outgrowth. Taken together, these results suggest that Dock6 differs from all of the identified Dock180-related proteins, in that it is the GEF specific for both Rac1 and Cdc42 and may be one of physiological regulators of neurite outgrowth.  相似文献   
997.
BAF is a double-stranded DNA binding protein required for proper nuclear morphology and function in Drosophila development. Imaginal discs of Drosophila baf-null mutants were found to exist only in younger larvae as small degenerative tissues. Immunohistochemical analyses showed diffuse lamin distribution, DNA fragmentation, and activation of caspase drICE in these tissues, suggesting that apoptotic events can be induced by the loss of baf. We therefore investigated the fate of BAF after induction of the pro-apoptotic hid transgene, and found that the loss of DNA binding forms of BAF preceded that of non-DNA binding forms of BAF. Furthermore, the DNA binding forms of BAF disappeared from nuclei before DNA fragmentation and NPC clustering were detected, showing that the loss of BAF occurs at the initial stages of nuclear apoptosis. This BAF loss was not detected before drICE activation and was inhibited by Ac-DEVD-CHO caspase inhibitors. In summary, BAF disappears at an early stage due to caspase activity when apoptosis is induced by hid, and its depletion in mutants is sufficient in itself to induce cell death, suggesting it is an apoptotic mediator.  相似文献   
998.
The purpose of this study was to investigate technical factors for maintaining skating velocity by kinematic analysis of the skating motion for elite long-distance skaters during the curve phase in official championship races. Sixteen world-class elite male skaters who participated in the 5,000-m race were videotaped with two synchronized high-speed video cameras (250 Hz) in a curve lane by using a panning DLT technique. Three-dimensional coordinates of the body and blades during the first and second halves of the races were collected to calculate kinematic parameters. In the group that maintained greater skating velocity, the thigh angle during the gliding phase of the left stroke during the second half was greater than that during the first half, and the center of mass was located more forward during the second half. Thus, it was suggested that long-distance speed skaters should change the support leg position during the gliding phase in the left stroke of the curve phase under fatigued conditions so that they could extend the support leg with a forward rotation of the thigh and less shank backward rotation.  相似文献   
999.
Abstract. Paramecium bursaria , a freshwater protozoan, typically harbors hundreds of symbiotic algae ( Chlorella sp.) in its cytoplasm. The relationship between host paramecia and symbiotic algae is stable and mutually beneficial in natural environments. We recently collected an aposymbiotic strain of P. bursaria . Infection experiments revealed that the natural aposymbiotic strain (Ysa2) showed unstable symbiosis with Chlorella sp. The algae aggregated at the posterior region of the host, resulting in aposymbiotic cell production after cell division. Cross-breeding analyses were performed to determine the heritability of the aposymbiotic condition. In crosses of Ysa2 with symbiotic strains of P. bursaria , F1 progeny were able to form stable symbioses with Chlorella sp. However, unstable symbiosis, resembling Ysa2 infection, occurred in some F2 progeny of sibling crosses between symbiotic F1 clones. Infection experiments using aposymbiotic F2 cells showed that these F2 subclones have limited ability to reestablish the symbiosis. These results indicate that the maintenance of stable symbiosis is genetically controlled and heritable, and that Ysa2 is a mutant lacking the mechanisms to establish stable symbiosis with Chlorella sp.  相似文献   
1000.
Neurochemical Research - One of the key areas in stem cell research is the identification of factors capable of promoting the expansion of Neural Stem Cell/Progenitor Cells (NSPCs) and...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号