首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3349篇
  免费   201篇
  3550篇
  2023年   25篇
  2022年   70篇
  2021年   97篇
  2020年   50篇
  2019年   70篇
  2018年   73篇
  2017年   74篇
  2016年   130篇
  2015年   169篇
  2014年   186篇
  2013年   241篇
  2012年   264篇
  2011年   270篇
  2010年   135篇
  2009年   120篇
  2008年   215篇
  2007年   197篇
  2006年   166篇
  2005年   160篇
  2004年   153篇
  2003年   125篇
  2002年   141篇
  2001年   40篇
  2000年   39篇
  1999年   28篇
  1998年   17篇
  1997年   27篇
  1996年   12篇
  1995年   11篇
  1994年   16篇
  1993年   17篇
  1992年   27篇
  1991年   16篇
  1990年   11篇
  1989年   15篇
  1988年   14篇
  1987年   5篇
  1986年   9篇
  1985年   11篇
  1983年   10篇
  1981年   5篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1971年   8篇
  1965年   4篇
排序方式: 共有3550条查询结果,搜索用时 0 毫秒
41.
42.
The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.  相似文献   
43.
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum ‘N509’. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.  相似文献   
44.
Hen egg lysozyme (HEL) is one of the sweet-tasting proteins. To understand why lysozyme is sweet, the enzyme was synthesized at high yields by a recombinant method. The mature HEL gene was cloned from a Taq polymerase-amplified PCR product into the Pichia pastoris expression and secretion vector pPIC6alpha. This expression vector contains both the Saccharomyces cerevisiae pre-pro alpha-mating factor secretion signal and the blasticidin resistance gene (bsd) for selection of transformants in bacteria and yeast. Expression of HEL was carried out in fermenter cultures. Culture supernatants were concentrated by ultrafiltration and purified by CM-ion exchange chromatography. Approximately 400 mgL-1 of recombinant HEL was obtained. The high yield of recombinant lysozyme enabled us to perform a sensory analysis in humans. The purified recombinant lysozyme elicited as a sweet taste sensation as does the lysozyme purified directly from egg white, and showed full lytic activity against cells of Micrococcus luteus. These results demonstrate that the P. pastoris expression system with the blasticidin S selection system is useful in producing recombinant sweet-tasting protein in active form at a high yield.  相似文献   
45.
To facilitate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced platelet aggregation in their saliva. However, their mechanisms of action have not been fully elucidated. Here, we describe two major salivary proteins, triplatin-1 and -2, from the assassin bug, Triatoma infestans, which inhibited platelet aggregation induced by collagen but not by other agents including ADP, arachidonic acid, U46619 and thrombin. Furthermore, these triplatins also inhibited platelet aggregation induced by collagen-related peptide, a specific agonist of the major collagen-signaling receptor glycoprotein (GP)VI. Moreover, triplatin-1 inhibited Fc receptor gamma-chain phosphorylation induced by collagen, which is the first step of GPVI-mediated signaling. These results strongly suggest that triplatins target GPVI and inhibit signal transduction necessary for platelet activation by collagen. This is the first report on the mechanism of action of collagen-induced platelet aggregation inhibitors from hematophagus invertebrates.  相似文献   
46.
Visualization of organelles in living cells is a powerful method for studying their dynamic behavior. Here we attempted to visualize mitochondria in angiosperm male gametophyte (pollen grain from Arabidopsis thaliana) that are composed of one vegetative cell (VC) and two sperm cells (SCs). Combination of mitochondria-targeted fluorescent proteins with VC- or SC-specific expression allowed us to observe the precise number and dynamic behavior of mitochondria in the respective cell types. Furthermore, live imaging of SC mitochondria during double fertilization confirmed previous observations, demonstrated by electron microscopy in other species, that sperm mitochondria enter into the egg and central cells. We also attempted to visualize mutant mitochondria that were elongated due to a defect in mitochondrial division. This mutant phenotype was indeed detectable in VC mitochondria of a heterozygous F(1) plant, suggesting active mitochondrial division in male gametophyte. Finally, we performed mutant screening and isolated a putative mitochondrial protein transport mutant whose phenotype was detectable only in haploid cells. The transgenic materials presented in this work are useful not only for live imaging but also for studying mitochondrial functions by mutant analysis.  相似文献   
47.
We have examined the pattern of gene expression of mouse cytokeratin endo A and endo B during postimplantational development and in adult organs by Northern blot and in situ hybridization analyses. Both mRNAs localized in the ectoplacental cone, trophoblastic giant cells surrounding the parietal yolk sac, trophoblast cells in placenta, visceral yolk sac, and simple epithelium of the embryo during postimplantational development and in simple or transitional epithelial tissues in adult organs. These results indicate that endo A and endo B are coexpressed and may play some roles in these tissues.  相似文献   
48.
Although the Japanese eel Anguilla japonica is a commercially important species, its habitat use is not well understood during its life stages in the river. In this study, we investigated the longitudinal distribution and microhabitat use of young Japanese eels (<200 mm in total length [TL], which correspond to elver and early yellow stages) using 180 quadrates (1 m × 1 m) in six stations in a small river (approximately 11.5 km long, 3.0–25.0 m wide) that flows through paddy areas in Fukushima Prefecture, Japan. No differences were observed in the TL of eels among the sampling stations. The analysis using generalized linear models showed that eel density increased as number of weirs decreased. The analysis using generalized additive models showed that water depth, current velocity, and substrate complexity were important factors determining microhabitat use. Eels used shallow habitats (<35 cm) with slow currents (5–40 cm/s) and high complex riverbeds (>0.35 in index of substrate complexity). These findings provide useful information to conserve and manage wild eels inhabiting small rivers flowing through paddy areas.  相似文献   
49.
We examined whether auxin/indole-3-acetic acid (Aux/IAA) proteins, which are key players in auxin-signal transduction, are involved in brassinosteroid (BR) responses. iaa7/axr2-1 and iaa17/axr3-3 mutants showed aberrant BR sensitivity and aberrant BR-induced gene expression in an organ-dependent manner. Two auxin inhibitors were tested in terms of BR responses. Yokonolide B inhibited BR responses, whereas p-chlorophenoxyisobutyric acid did not inhibit BR responses. DNA microarray analysis revealed that 108 genes were up-regulated, while only eight genes were down-regulated in iaa7. Among the genes that were up- or down-regulated in axr2, 22% were brassinolide-inducible genes, 20% were auxin-inducible genes, and the majority were sensitive neither to BR nor to auxin. An inhibitor of BR biosynthesis, brassinazole, inhibited auxin induction of the DR5-GUS gene, which consists of a synthetic auxin-response element, a minimum promoter, and a beta-glucuronidase. These results suggest that Aux/IAA proteins function in auxin- and BR-signaling pathways, and that IAA proteins function as the signaling components modulating BR sensitivity in a manner dependent on organ type.  相似文献   
50.
Among the many mammalian secreted phospholipase A2 (sPLA2) enzymes, PLA2G3 (group III secreted phospholipase A2) is unique in that it possesses unusual N- and C-terminal domains and in that its central sPLA2 domain is homologous to bee venom PLA2 rather than to other mammalian sPLA2s. To elucidate the in vivo actions of this atypical sPLA2, we generated transgenic (Tg) mice overexpressing human PLA2G3. Despite marked increases in PLA2 activity and mature 18-kDa PLA2G3 protein in the circulation and tissues, PLA2G3 Tg mice displayed no apparent abnormality up to 9 months of age. However, alterations in plasma lipoproteins were observed in PLA2G3 Tg mice compared with control mice. In vitro incubation of low density (LDL) and high density (HDL) lipoproteins with several sPLA2s showed that phosphatidylcholine was efficiently converted to lysophosphatidylcholine by PLA2G3 as well as by PLA2G5 and PLA2G10, to a lesser extent by PLA2G2F, and only minimally by PLA2G2A and PLA2G2E. PLA2G3-modified LDL, like PLA2G5- or PLA2G10-treated LDL, facilitated the formation of foam cells from macrophages ex vivo. Accumulation of PLA2G3 was detected in the atherosclerotic lesions of humans and apoE-deficient mice. Furthermore, following an atherogenic diet, aortic atherosclerotic lesions were more severe in PLA2G3 Tg mice than in control mice on the apoE-null background, in combination with elevated plasma lysophosphatidylcholine and thromboxane A2 levels. These results collectively suggest a potential functional link between PLA2G3 and atherosclerosis, as has recently been proposed for PLA2G5 and PLA2G10.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号