全文获取类型
收费全文 | 3161篇 |
免费 | 194篇 |
专业分类
3355篇 |
出版年
2024年 | 4篇 |
2023年 | 26篇 |
2022年 | 67篇 |
2021年 | 93篇 |
2020年 | 49篇 |
2019年 | 69篇 |
2018年 | 70篇 |
2017年 | 74篇 |
2016年 | 123篇 |
2015年 | 168篇 |
2014年 | 176篇 |
2013年 | 238篇 |
2012年 | 252篇 |
2011年 | 265篇 |
2010年 | 129篇 |
2009年 | 117篇 |
2008年 | 209篇 |
2007年 | 188篇 |
2006年 | 160篇 |
2005年 | 147篇 |
2004年 | 153篇 |
2003年 | 110篇 |
2002年 | 128篇 |
2001年 | 28篇 |
2000年 | 36篇 |
1999年 | 30篇 |
1998年 | 11篇 |
1997年 | 22篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 11篇 |
1993年 | 15篇 |
1992年 | 19篇 |
1991年 | 13篇 |
1990年 | 14篇 |
1989年 | 15篇 |
1988年 | 10篇 |
1987年 | 9篇 |
1986年 | 12篇 |
1985年 | 8篇 |
1984年 | 6篇 |
1983年 | 8篇 |
1982年 | 5篇 |
1981年 | 8篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1976年 | 4篇 |
1974年 | 5篇 |
1973年 | 6篇 |
1971年 | 6篇 |
排序方式: 共有3355条查询结果,搜索用时 15 毫秒
101.
Coenzyme Q functions as an electron carrier and reversibly changes to either an oxidized (CoQ), intermediate (CoQ.-), or reduced (CoQH2) form within a biomembrane. The CoQH2 form also acts as an antioxidant and prevents cell death, and thus has been successfully used as a supplement. On the other hand, the value of the CoQ/CoQH2 ratio has been shown to increase in a number of diseases, presumably due to an anti-proliferative effect involving CoQ. In the present study, we examined the effect of CoQ and its isoprenoid side chain length variants on the growth of cells having different p53 statuses. Treatment with CoQs having shorter isoprenoid chains, especially CoQ2, induced apoptosis in p53-point mutated BALL-1 cells, whereas treatment with longer isoprenoid chains did not. However, CoQ2 did not induce apoptosis in either a p53 wild-type cell line or a p53 null mutant cell line. These results indicated that the induction of apoptosis by CoQ2 was dependent on p53 protein levels. Moreover, CoQ2 induced reactive oxygen species (ROS) and the phosphorylation of p53. An antioxidant, l-ascorbic acid, inhibited CoQ2-induced p53 phosphorylation and further apoptotic stimuli. Overall, these results suggested that short tail CoQ induces ROS generation and further p53-dependent apoptosis. 相似文献
102.
Kimura Y 《Journal of human evolution》2002,43(3):291-321
The lithic analysis of the Bed I and II assemblages from Olduvai Gorge reveals both static and dynamic time trends in early hominids' technology from 1.8 to 1.2 m.y.a. The Bed I Oldowan (1.87-1.75 m.y.a.) is characterized by the least effort strategy in terms of raw material exploitation and tool production. The inclusion of new raw material, chert, for toolmaking in the following Developed Oldowan A (DOA, 1.65-1.53 m.y.a.) facilitated more distinctive and variable flaking strategies depending on the kind of raw materials. The unique characters of DOA are explainable by this raw material factor, rather than technological development of hominids. The disappearance of chert in the subsequent Developed Oldowan B and Acheulian (1.53-1.2 m.y.a.) necessitated a shift in tool production strategy more similar to that of Bed I Oldowan than DOA. However, the evidence suggests that Bed II hominids might have been more skillful toolmakers, intensive tool-users, and engaged in more active transport of stone tools than the Bed I predecessors. Koobi Fora hominids maintained a more static tool-using behavior than their Olduvai counterparts due mainly to a stable supply of raw materials. They differed from Olduvai hominids in terms of less battering of cores, consistent transport behavior, and few productions of side-struck flakes, indicating a regional variation of toolmaking and using practice. However, they shared with Olduvai hominids a temporal trend toward the production of larger flakes from larger cores after 1.6 m.y.a. Increased intake of animal resources and the expansion of ranging area of Homo ergaster would have led to the development of technological organization. Technological changes in the Oldowan industry are attested at Olduvai Gorge, Koobi Fora, and Sterkfontein, suggesting that it was a pan-African synchronous phenomenon, beginning at 1.5 m.y.a. 相似文献
103.
Microtubules play critical roles in a variety of cell processes, including mitosis, organelle transport, adhesion and migration, and the maintenance of cell polarity. Microtubule-associated proteins (MAPs) regulate the dynamic organization and stability of microtubules, often through either cell-specific or cell division stage-specific interactions. To identify novel cytoskeletal-associated proteins and peptides that regulate microtubules and other cytoskeletal and adhesive structures, we have developed a GFP cDNA screening strategy based on identifying gene products that localize to these structures. Using this approach, we have identified a novel MAP, GLFND, that shows homology to the Opitz syndrome gene product [6], localizes to a subpopulation of microtubules that are acetylated, and protects microtubules from depolymerization with nocodazole. Expression of an N-terminal deletion binds microtubules but alters their organization. During the cell cycle, GLFND dissociates from microtubules at the beginning of mitosis and then reassociates at cytokinesis. Furthermore, ectopic expression of GLFND inhibits cell division and cytokinesis in CHO cells. These observations make GLFND unique among MAPs characterized thus far. 相似文献
104.
Sakuraba H Yoshioka I Koga S Takahashi M Kitahama Y Satomura T Kawakami R Ohshima T 《The Journal of biological chemistry》2002,277(15):12495-12498
A gene encoding an ADP-dependent phosphofructokinase homologue has been identified in the hyperthermophilic archaeon Methanococcus jannaschii via genome sequencing. The gene encoded a protein of 462 amino acids with a molecular weight of 53,361. The deduced amino acid sequence of the gene showed 52 and 29% identities to the ADP-dependent phosphofructokinase and glucokinase from Pyrococcus furiosus, respectively. The gene was overexpressed in Escherichia coli, and the produced enzyme was purified and characterized. To our surprise, the enzyme showed high ADP-dependent activities for both glucokinase and phosphofructokinase. A native molecular mass was estimated to be 55 kDa, and this indicates the enzyme is monomeric. The reaction rate for the phosphorylation of D-glucose was almost 3 times that for D-fructose 6-phosphate. The K(m) values for D-fructose 6-phosphate and D-glucose were calculated to be 0.010 and 1.6 mm, respectively. The K(m) values for ADP were 0.032 and 0.63 mm when D-glucose and D-fructose 6-phosphate were used as a phosphoryl group acceptor, respectively. The gene encoding the enzyme is proposed to be an ancestral gene of an ADP-dependent phosphofructokinase and glucokinase. A gene duplication event might lead to the two enzymatic activities. 相似文献
105.
Sofia Theodoropoulou Katarzyna Brodowska Maki Kayama Yuki Morizane Joan W. Miller Evangelos S. Gragoudas Demetrios G. Vavvas 《PloS one》2013,8(1)
5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo. Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive) compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition. Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma. 相似文献
106.
Homma Yuri Mita Kazuei Nakamura Yuki Namiki Toshiki Noda Hiroaki Shinoda Tetsuro Togawa Toru 《Applied Entomology and Zoology》2020,55(1):45-54
Applied Entomology and Zoology - Juvenile hormone (JH) has crucial roles in insect physiology, including development, reproduction, and polyphenism. JH is synthesized in the corpora allata (CA)... 相似文献
107.
Since it is known that androstenediol (ADIOL) has potent immunoregulatory effects, changes in ADIOL levels during and after pregnancy might affect the maternal immune system. We examined serum concentrations of ADIOL and androstenediol 3-sulfate (ADIOLS) together with IFN-gamma and IL-4 production levels during pregnancy and after delivery up to 10-11 months postpartum. The subjects were 73 normal pregnant, 76 normal postpartum, and 28 normal non-pregnant women. ADIOL and ADIOLS were measured using EIA and GC/MS, respectively. The cytokine levels in the supernatant of whole-blood cultures stimulated with phorbol 12-myristate 13-acetate and ionomycin were measured using ELISA. ADIOL levels significantly decreased compared to non-pregnant levels in the first trimester (P < 0.05) and were reversed in the third trimester (P < 0.05). After pregnancy, ADIOL levels gradually declined, and a significant decrease was observed at 10-11 months postpartum (P < 0.05). ADIOLS levels were significantly lower in the third trimester (P < 0.05) and significantly higher at the first month postpartum (P < 0.001) compared to non-pregnant women. IFN-gamma and IL-4 levels decreased during pregnancy and subsequently increased postpartum. On the other hand, we found significant negative correlations between ADIOL concentrations and production levels of IFN-gamma (P < 0.05) or IL-4 (P < 0.05). These findings suggest that ADIOL may be involved in modifying the maternal immune response during and after pregnancy. 相似文献
108.
Downregulation of p‐COUMAROYL ESTER 3‐HYDROXYLASE in rice leads to altered cell wall structures and improves biomass saccharification 下载免费PDF全文
Yuri Takeda Yuki Tobimatsu Steven D. Karlen Taichi Koshiba Shiro Suzuki Masaomi Yamamura Shinya Murakami Mai Mukai Takefumi Hattori Keishi Osakabe John Ralph Masahiro Sakamoto Toshiaki Umezawa 《The Plant journal : for cell and molecular biology》2018,95(5):796-811
p‐Coumaroyl ester 3‐hydroxylase (C3′H) is a key enzyme involved in the biosynthesis of lignin, a phenylpropanoid polymer that is the major constituent of secondary cell walls in vascular plants. Although the crucial role of C3′H in lignification and its manipulation to upgrade lignocellulose have been investigated in eudicots, limited information is available in monocotyledonous grass species, despite their potential as biomass feedstocks. Here we address the pronounced impacts of C3′H deficiency on the structure and properties of grass cell walls. C3′H‐knockdown lines generated via RNA interference (RNAi)‐mediated gene silencing, with about 0.5% of the residual expression levels, reached maturity and set seeds. In contrast, C3′H‐knockout rice mutants generated via CRISPR/Cas9‐mediated mutagenesis were severely dwarfed and sterile. Cell wall analysis of the mature C3′H‐knockdown RNAi lines revealed that their lignins were largely enriched in p‐hydroxyphenyl (H) units while being substantially reduced in the normally dominant guaiacyl (G) and syringyl (S) units. Interestingly, however, the enrichment of H units was limited to within the non‐acylated lignin units, with grass‐specific γ‐p‐coumaroylated lignin units remaining apparently unchanged. Suppression of C3′H also resulted in relative augmentation in tricin residues in lignin as well as a substantial reduction in wall cross‐linking ferulates. Collectively, our data demonstrate that C3′H expression is an important determinant not only of lignin content and composition but also of the degree of cell wall cross‐linking. We also demonstrated that C3′H‐suppressed rice displays enhanced biomass saccharification. 相似文献
109.
Mizuho Kunii Mami Yasuno Yuki Shindo Takefumi Kawata 《Development genes and evolution》2014,224(1):25-35
Dictyostelium discoideum is a facultative multicellular amoebozoan with cellulose in the stalk and spore coat of its fruiting body as well as in the extracellular matrix of the migrating slug. The organism also harbors a number of cellulase genes. One of them, cbhA, was identified as a candidate cellobiohydrolase gene based on the strong homology of its predicted protein product to fungal cellobiohydrolase I (CBHI). Expression of the cbhA was developmentally regulated, with strong expression in the spores of the mature fruiting body. However, a weak but detectable level of expression was observed in the extracellular matrix at the mound — tipped finger stages, in prestalk O cells, and in the slime sheath of the migrating slug — late culminant stages. A null mutant of the cbhA showed almost normal morphology. However, the developmental timing of the mutant was delayed by 2–4 h. When a c-Myc epitope-tagged CbhA was expressed, it was secreted into the culture medium and was able to bind crystalline cellulose. The CbhA-myc protein was glycosylated, as demonstrated by its ability to bind succinyl concanavalin A-agarose. Moreover, conditioned medium from the cbhA-myc oe strain displayed 4-methylumbelliferyl β-d-cellobioside (4-MUC) digesting activity in Zymograms in which conditioned medium was examined via native-polyacrylamide gel electrophoresis or spotted on an agar plate containing 4-MUC, one of the substrates of cellobiohydrolase. Taken together, these findings indicate that Dictyostelium CbhA is an orthologue of CBH I that is required for a normal rate of development. 相似文献
110.
Yuki Doi Motoyuki Shimizu Tomoya Fujita Akira Nakamura Noboru Takizawa Naoki Takaya 《Applied and environmental microbiology》2014,80(6):1910-1918
We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2−) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2−-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2− tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2−. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2−-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2−. These findings demonstrate a link between NO2− tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2−-tolerating mechanism in this strain. 相似文献