首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2728篇
  免费   165篇
  2893篇
  2024年   3篇
  2023年   25篇
  2022年   66篇
  2021年   89篇
  2020年   48篇
  2019年   67篇
  2018年   67篇
  2017年   71篇
  2016年   116篇
  2015年   157篇
  2014年   168篇
  2013年   210篇
  2012年   231篇
  2011年   243篇
  2010年   121篇
  2009年   103篇
  2008年   193篇
  2007年   172篇
  2006年   141篇
  2005年   128篇
  2004年   127篇
  2003年   88篇
  2002年   111篇
  2001年   14篇
  2000年   10篇
  1999年   11篇
  1998年   9篇
  1997年   17篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1993年   11篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1986年   4篇
  1985年   3篇
  1981年   4篇
  1980年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有2893条查询结果,搜索用时 15 毫秒
971.
A double-blind, placebo-controlled, randomized clinical trial was conducted to evaluate the effects of ingesting an excess of tablets containing casein hydrolysate, incorporating angiotensin I-converting enzyme (ACE) inhibitory peptides such as Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP), in subjects with blood pressure ranging from normal to mild hypertension. A total of 48 subjects were given either 5 times more than the effective amount of casein hydrolysate or a placebo in tablet form for 4 weeks. In the active group, systolic blood pressure (SBP) decreased significantly as compared with the placebo group. In stratified analysis, however, this antihypertensive effect was not found in normotensive subjects. In addition, neither an acute or nor an excessive reduction in blood pressure nor clinically important adverse events were observed in this study. These findings suggest that intake of a 5-fold excess of tablets containing casein hydrolysate can lead to a mild improvement in hypertension without side effects.  相似文献   
972.
Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.  相似文献   
973.
Metabolic changes in response to histidine starvation were observed in histidine-auxotrophic Escherichia coli using a capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolomics technique. Prior to the analysis, we prepared an E. coli metabolome list of 727 metabolites reported in the literature. An improved method for metabolite extraction was developed, which resulted in higher extraction efficiency in phosphate-rich metabolites, e.g., ATP and GTP. Based on the results, 375 charged, hydrophilic intermediates in primary metabolisms were analysed simultaneously, providing quantitative data of 198 metabolites. We confirmed that the intracellular levels of intermediates in histidine biosynthesis are rapidly accumulated in response to a drop in histidine level under histidine-starved conditions. Simultaneously, disciplined responses were observed in the glycolysis, tricarboxylic acid cycle, and amino acid and nucleotide biosynthesis pathways as regulated by amino acid starvation.  相似文献   
974.
Tetraheme cytochrome c 3 (cyt c 3) exhibits extremely low reduction potentials and unique properties. Since axial ligands should be the most important factors for this protein, every axial histidine of Desulfovibrio vulgaris Miyazaki F cyt c 3 was replaced with methionine, one by one. On mutation at the fifth ligand, the relevant heme could not be linked to the polypeptide, revealing the essential role of the fifth histidine in heme linking. The fifth histidine is the key residue in the structure formation and redox regulation of a c-type cytochrome. A crystal structure has been obtained for only H25M cyt c 3. The overall structure was not affected by the mutation except for the sixth methionine coordination at heme 3. NMR spectra revealed that each mutated methionine is coordinated to the sixth site of the relevant heme in the reduced state, while ligand conversion takes place at hemes 1 and 4 during oxidation at pH 7. The replacement of the sixth ligand with methionine caused an increase in the reduction potential of the mutated heme of 222-244 mV. The midpoint potential of a triheme H52M cyt c 3 is higher than that of the wild type by approximately 50 mV, suggesting a contribution of the tetraheme architecture to the lowering of the reduction potentials. The hydrogen bonding of Thr24 with an axial ligand induces a decrease in reduction potential of approximately 50 mV. In conclusion, the bis-histidine coordination is strategically essential for the structure formation and the extremely low reduction potential of cyt c 3.  相似文献   
975.
To identify the bacteria that play a major role in the aerobic degradation of petroleum polynuclear aromatic hydrocarbons (PAHs) in a marine environment, bacteria were enriched from seawater by using 2-methylnaphthalene, phenanthrene, or anthracene as a carbon and energy source. We found that members of the genus Cycloclasticus became predominant in the enrichment cultures. The Cycloclasticus strains isolated in this study could grow on crude oil and degraded PAH components of crude oil, including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. To deduce the role of Cycloclasticus strains in a coastal zone oil spill, propagation of this bacterial group on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks that were 1 m wide by 1.5 m long by 1 m high. The tanks were two-thirds filled with gravel, and seawater was continuously introduced into the tanks; the water level was varied between 30 cm above and 30 cm below the surface of the gravel layer to simulate a 12-h tidal cycle. The number of Cycloclasticus cells associated with the grains was on the order of 103 cells/g of grains before crude oil was added to the tanks and increased to 3 × 106 cells/g of grains after crude oil was added. The number increased further after 14 days to 108 cells/g of grains when nitrogen and phosphorus fertilizers were added, while the number remained 3 × 106 cells/g of grains when no fertilizers were added. PAH degradation proceeded parallel with the growth of Cycloclasticus cells on the surfaces of the oil-polluted grains of gravel. These observations suggest that bacteria belonging to the genus Cycloclasticus play an important role in the degradation of petroleum PAHs in a marine environment.  相似文献   
976.
977.
Amyloidogenic transthyretin (ATTR) is the pathogenic protein of familial amyloidotic polyneuropathy (FAP). To establish a tool for analyses of ATTR metabolisms including after liver transplantations, we developed a transgenic rat model expressing human ATTR V30M and confirmed expressions of human ATTR V30M in various tissues. Mass spectrometry for purified TTR revealed that rat intrinsic TTR and human ATTR V30M formed tetramers. Congo red staining and immunohistochemistry revealed that nonfibrillar deposits of human ATTR V30M, but not amyloid deposits, were detected in the gastrointestinal tracts of the transgenic rats. At 24h after liver transplantation, serum human ATTR V30M levels in transgenic rats that received livers from normal rats became lower than detectable levels. These results thus suggest that this transgenic rat may be a useful animal model which analyzes the metabolism of human ATTR V30M including liver transplantation studies.  相似文献   
978.
Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.  相似文献   
979.
This report describes a novel and efficient method for walking the sequence of a genomic deoxyribonucleic acid (DNA) from a known region to an unknown region based on an oligodeoxynucleotide (oligo) cassette-mediated polymerase chain reaction technique. In this method, genomic DNA is digested by a restriction enzyme that generates a sticky 5′-end, followed by ligation of a one-base excess oligo-adaptor using T4 DNA ligase. The adaptor consists of two complementary oligos that form the same sticky end as the digested genomic DNA fragments, except that the 5′-overhang base overlaps the corresponding 3′-end base of the restriction site. This overhanging terminal base prevents ligation between the adaptors, and the appropriate molar ratio of adaptor to genomic DNA enables specific amplification of the target sequence. T4 DNA ligase catalyzes both the ligation of the phosphorylated overhang base of the adaptor to genomic DNA and the excision of the corresponding 3′-terminal base of the genomic DNA. This sequence-specific exonuclease activity of T4 DNA ligase was confirmed by ligation of an alternative adaptor in which the 5′-terminal base was not consistent with the corresponding 3′-terminal base. Using this technique, the 3′- and 5′-flanking sequences of the catalase gene of the ciliate Paramecium bursaria were determined.  相似文献   
980.
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号