首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   686篇
  免费   34篇
  国内免费   1篇
  721篇
  2023年   2篇
  2022年   3篇
  2021年   10篇
  2019年   7篇
  2018年   13篇
  2017年   9篇
  2016年   10篇
  2015年   20篇
  2014年   29篇
  2013年   41篇
  2012年   62篇
  2011年   65篇
  2010年   29篇
  2009年   28篇
  2008年   48篇
  2007年   43篇
  2006年   48篇
  2005年   46篇
  2004年   38篇
  2003年   35篇
  2002年   33篇
  2001年   12篇
  2000年   11篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1967年   1篇
排序方式: 共有721条查询结果,搜索用时 15 毫秒
121.
Sphingomonas paucimobilis SYK-6 transforms 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA), a lignin-related biphenyl compound, to 5-carboxyvanillic acid via 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA) as an intermediate (15). The ring fission of OH-DDVA is an essential step in the DDVA degradative pathway. A 15-kb EcoRI fragment isolated from the cosmid library complemented the growth deficiency of a mutant on OH-DDVA. Subcloning and deletion analysis showed that a 1.4-kb DNA fragment included the gene responsible for the ring fission of OH-DDVA. An open reading frame encoding 334 amino acids was identified and designated ligZ. The deduced amino acid sequence of LigZ had 18 to 21% identity with the class III extradiol dioxygenase family, including the β subunit (LigB) of protocatechuate 4,5-dioxygenase of SYK-6 (Y. Noda, S. Nishikawa, K.-I. Shiozuka, H. Kadokura, H. Nakajima, K. Yano, Y. Katayama, N. Morohoshi, T. Haraguchi, and M. Yamasaki, J. Bacteriol. 172:2704–2709, 1990), catechol 2,3-dioxygenase I (MpcI) of Alcaligenes eutrophus JMP222 (M. Kabisch and P. Fortnagel, Nucleic Acids Res. 18:3405–3406, 1990), the catalytic subunit of the meta-cleavage enzyme (CarBb) for 2′-aminobiphenyl-2,3-diol from Pseudomonas sp. strain CA10 (S. I. Sato, N. Ouchiyama, T. Kimura, H. Nojiri, H. Yamane, and T. Omori, J. Bacteriol. 179:4841–4849, 1997), and 2,3-dihydroxyphenylpropionate 1,2-dioxygenase (MhpB) of Escherichia coli (E. L. Spence, M. Kawamukai, J. Sanvoisin, H. Braven, and T. D. H. Bugg, J. Bacteriol. 178:5249–5256, 1996). The ring fission product formed from OH-DDVA by LigZ developed a yellow color with an absorption maximum at 455 nm, suggesting meta cleavage. Thus, LigZ was concluded to be a ring cleavage extradiol dioxygenase. LigZ activity was detected only for OH-DDVA and 2,2′,3,3′-tetrahydroxy-5,5′-dicarboxybiphenyl and was dependent on the ferrous ion.Lignin is the most common aromatic compound in the biosphere, and the degradation of lignin is a significant step in the global carbon cycle. Lignin is composed of various intermolecular linkages between phenylpropanes and guaiacyl, syringyl, p-hydroxyphenyl, and biphenyl nuclei (5, 34). Lignin breakdown therefore involves multiple biochemical reactions involving the cleavage of intermonomeric linkages, demethylations, hydroxylations, side-chain modifications, and aromatic ring fission (10, 11, 19, 40).Soil bacteria are known to display ample metabolic versatility toward aromatic substrates. Sphingomonas paucimobilis SYK-6 (formerly Pseudomonas paucimobilis SYK-6) has been isolated with 2,2′-dihydroxy-3,3′-dimethoxy-5,5′-dicarboxybiphenyl (DDVA) as a sole carbon and energy source. This strain can also grow on syringate, 3-O-methylgallic acid (3OMGA), vanillate, and other dimeric lignin compounds, including β-aryl ether, diarylpropane (β-1), and phenylcoumaran (15). Analysis of the metabolic pathway has indicated that the dimeric lignin compounds are degraded to protocatechuate or 3OMGA (15) and that these compounds are cleaved by protocatechuate 4,5-dioxygenase encoded by ligAB (30). Among the dimeric lignin compounds, the degradation of β-aryl ether and the biphenyl structure is the most important, because β-aryl ether is most abundant in lignin (50%) and the biphenyl structure is so stable that its decomposition should be rate limiting in lignin degradation. We have already characterized the β-etherase and Cα-dehydrogenase genes (2326) (ligFE and ligD, respectively) involved in the degradation of β-aryl ether. In this study, we focused on the genes responsible for the degradation of DDVA in SYK-6.In the proposed DDVA metabolic pathway of S. paucimobilis SYK-6 illustrated in Fig. Fig.1A,1A, DDVA is first demethylated to produce the diol compound 2,2′,3-trihydroxy-3′-methoxy-5,5′-dicarboxybiphenyl (OH-DDVA). OH-DDVA is then degraded to 5-carboxyvanillic acid (5-CVA), and this compound is converted to 3OMGA (15). The resulting product is cleaved by protocatechuate 4,5-dioxygenase. A ring cleavage enzyme for OH-DDVA has been thought to be involved in this pathway because the production of 5-CVA from OH-DDVA resembles the formation of benzoic acid from biphenyl by 2,3-dihydroxybiphenyl through the sequential action of a meta cleavage enzyme and a meta-cleavage compound hydrolase (Fig. (Fig.1B)1B) (1, 9, 13, 18, 21, 28). Open in a separate windowFIG. 1(A) Proposed metabolic pathway for DDVA by S. paucimobilis SYK-6. (B) Pathway for the conversion of 2,3-dihydroxybiphenyl (2,3-DHBP) to benzoate by the polychlorinated biphenyl-degrading bacteria. The proposed DDVA metabolic pathway follows the previous one (15). Enzymes: LigZ, OH-DDVA oxygenase; LigAB, protocatechuate 4,5-dioxygenase; BphC, 2,3-dihydroxybiphenyl 1,2-dioxygenase; BphD, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase. TCA, tricarboxylic acid.In this study, we isolated the ligZ gene encoding a ring cleavage enzyme for OH-DDVA. The nucleotide sequence of the gene was determined, and the ligZ gene product was characterized.  相似文献   
122.
We have shown the functional expression by chondrocytes of serine racemase (SR) which is responsible for the synthesis of D-serine (Ser) from L-Ser in cartilage. In this study, we evaluated the possible functional expression of SR by bone-forming osteoblasts and bone-resorbing osteoclasts. Expression of SR mRNA was seen in osteoblasts localized at the cancellous bone surface in neonatal rat tibial sections and in cultured rat calvarial osteoblasts endowed to release D-Ser into extracellular medium, but not in cultured osteoclasts differentiated from murine bone marrow progenitor cells. Sustained exposure to D-Ser failed to significantly affect alkaline phosphatase activity and Ca(2+) accumulation in cultured osteoblasts, but significantly inhibited differentiation and maturation in a concentration-dependent manner at a concentration range of 0.1-1 mM without affecting cellular survival in cultured osteoclasts. By contrast, L-Ser promoted osteoclastic differentiation in a manner sensitive to the inhibition by D-Ser. Matured osteoclasts expressed mRNA for the amino acid transporter B(0,+) (ATB(0,+) ) and the system alanine, serine, and cysteine amino acid transporter-2 (ASCT2), which are individually capable of similarly incorporating extracellular L- and D-Ser. Knockdown of these transporters by siRNA prevented both the promotion by L-Ser and the inhibition by D-Ser of osteoclastic differentiation in pre-osteoclastic RAW264.7 cells. These results suggest that D-Ser may play a pivotal role in osteoclastogenesis through a mechanism related to the incorporation mediated by both ATB(0,+) and ASCT2 of serine enantiomers in osteoclasts after the synthesis and subsequent release from adjacent osteoblasts.  相似文献   
123.
We previously reported that chronic inhibition of nitric oxide (NO) synthesis with N(omega)-nitro-L-arginine methyl ester (L-NAME) induces vascular inflammation at week 1 and produces subsequent arteriosclerosis at week 4 and that cotreatment with an angiotensin-converting enzyme (ACE) inhibitor prevents such changes. In the present study, we tested the hypothesis that treatment with an ACE inhibitor after development of vascular inflammation could inhibit arteriosclerosis in rats. Wistar-Kyoto rats were randomized to four groups: the control group received no drugs, the 4wL-NAME group received L-NAME (100 mg x kg(-1) x day(-1)) for 4 wk, the 1wL + 3wNT group received L-NAME for 1 wk and no treatment for the subsequent 3 wk, and the 1wL + 3wACEI group received L-NAME for 1 wk and the ACE inhibitor imidapril (20 mg x kg(-1) x day(-1)) for the subsequent 3 wk. After 4 wk, we observed significant arteriosclerosis of the coronary artery (medial thickening and fibrosis) and increased cardiac ACE activity in the 1wL + 3wNT group as well as in the 4wL-NAME group, but not in the 1wL + 3wACEI group. In a separate study, we examined apoptosis formation and found that posttreatment with imidapril (20 mg x kg(-1) x day(-1)) or an ANG II AT1-receptor antagonist, CS-866 (5 mg x kg(-1) x day(-1)), induced apoptosis (TdT-mediated nick end-labeling) in monocytes and myofibroblasts appearing in the inflammatory lesions associated with a clear degradation in the heart (DNA electrophoresis). In conclusion, treatment with the ACE inhibitor after 1 wk of L-NAME administration inhibited arteriosclerosis by inducing apoptosis in the cells with inflammatory lesions in this study, suggesting that increased ANG II activity inhibited apoptosis of the cells with inflammatory lesions and thus contributed to the development of arteriosclerosis.  相似文献   
124.
Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem II (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). PsbE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as PsbE, F, H, I, L, M, U, V and X, the presence of PsbY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.  相似文献   
125.
Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX.  相似文献   
126.
127.
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea . α-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and β-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were α-1,3-glucan and chitosan, but after enzymatic digestion of α-1,3-glucan, β-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed α-1,3-glucan and β-1,3-glucan intermixed in the cell wall of infectious hyphae; however, α-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of α-1,3-glucan. Accumulation of α-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, α-1,3-glucan spatially and functionally masks β-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea .  相似文献   
128.
129.
We used the forced swimming test to investigate the influence of Chlorella powder intake during muscle stress training in mice. After day 14, swimming time was about 2-fold longer for Chlorella intake mice than for control swimming mice. Microarray analysis revealed that the global gene expression profile of muscle from the Chlorella intake mice was similar to that of muscle from the intact (non-swimming) mice, and the profile of these two groups differed from that of the control (swimming) mice. Gene ontology and pathway analyses of gene expression data showed that oxidoreductase activity and the leukotriene synthesis pathway were repressed in the Chlorella intake mice following the swimming test. In addition, measurements of free fatty acids, glucose, triglycerides, and lactic acid in the blood of Chlorella intake mice were higher than that of control mice. These findings suggest that metabolism in tissues is altered by Chlorella intake.  相似文献   
130.
Schlacher K  Christ N  Siaud N  Egashira A  Wu H  Jasin M 《Cell》2011,145(4):529-542
Breast cancer suppressor BRCA2 is critical for maintenance of genomic integrity and resistance to agents that damage DNA or collapse replication forks, presumably through homology-directed repair of double-strand breaks (HDR). Using single-molecule DNA fiber analysis, we show here that nascent replication tracts created before fork stalling with hydroxyurea are degraded in the absence of BRCA2 but are stable in wild-type cells. BRCA2 mutational analysis reveals that a conserved C-terminal site involved in stabilizing RAD51 filaments, but not in loading RAD51 onto DNA, is essential for this fork protection but dispensable for HDR. RAD51 filament disruption in wild-type cells phenocopies BRCA2 deficiency. BRCA2 prevents chromosomal aberrations on replication stalling, which are alleviated by inhibition of MRE11, the nuclease responsible for this form of fork instability. Thus, BRCA2 prevents rather than repairs nucleolytic lesions at stalled replication forks to maintain genomic integrity and hence likely suppresses tumorigenesis through this replication-specific function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号