首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1056篇
  免费   57篇
  2024年   1篇
  2023年   6篇
  2022年   11篇
  2021年   33篇
  2020年   16篇
  2019年   15篇
  2018年   30篇
  2017年   29篇
  2016年   42篇
  2015年   65篇
  2014年   80篇
  2013年   77篇
  2012年   90篇
  2011年   92篇
  2010年   57篇
  2009年   32篇
  2008年   75篇
  2007年   74篇
  2006年   41篇
  2005年   43篇
  2004年   53篇
  2003年   37篇
  2002年   38篇
  2001年   6篇
  2000年   4篇
  1999年   8篇
  1998年   14篇
  1997年   4篇
  1996年   2篇
  1995年   7篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1973年   1篇
排序方式: 共有1113条查询结果,搜索用时 296 毫秒
91.
Plasmodium falciparum, the major causative parasite for the disease, has acquired resistance to most of the antimalarial drugs used today, presenting an immediate need for new antimalarial drugs. Here, we report the in vitro and in vivo antimalarial activities of 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against P. falciparum and Plasmodium berghei parasites. The N-251 showed high antimalarial potencies both in the in vitro and the in vivo tests (EC50 2.3 × 10−8 M; ED50 15 mg/kg (per oral)). The potencies were similar to that of artemisinin in vitro and greater than artemisinin's activity in vivo (p.o.). In addition, N-251 has little toxicity: a single oral administration at 2000 mg/kg to a rat gave no health problems to it. Administration of N-251 to mice bearing 1% of parasitemia (per oral 68 mg/kg, 3 times a day for 3 consecutive days) resulted in a dramatic decrease in the parasitemia: all the 5 mice given N-251 were cured without any recurrence, with no diarrhea or weight loss occurring in the 60 days of experiment. N-251 deserves more extensive clinical evaluation, desirably including future trials in the human.  相似文献   
92.
Ichii O  Otsuka S  Namiki Y  Hashimoto Y  Kon Y 《PloS one》2011,6(11):e27783
Primary causes of urinary tract obstruction that induces urine retention and results in hydronephrosis include uroliths, inflammation, and tumors. In this study, we analyzed the molecular pathology of ureteritis causing hydronephrosis in laboratory rodents.F2 progenies of C57BL/6 and DBA/2 mice were studied histopathologically and by comprehensive gene expression analysis of their ureters. Incidence of hydronephrosis was approximately 5% in F2 progenies. Histopathologically, this hydronephrosis was caused by stenosis of the proximal ureter, which showed fibrosis and papillary malformations of the proliferative epithelium with infiltrations of B-cell-dominated lymphocytes. Additionally, CD16-positive large granular leukocytes and eosinophils infiltrated from the ureteral mucosa to the muscular layer. Eosinophilic crystals were characteristically observed in the lumen of the ureter and the cytoplasm of large granular leukocytes, eosinophils, and transitional epithelial cells. Comprehensive gene profiling revealed remarkably elevated expression of genes associated with hyperimmune responses through activation of B cells in diseased ureters. Furthermore, diseased ureters showed dramatically higher gene expression of chitinase 3-like 3, known as Ym1, which is associated with formation both of adenomas in the transitional epithelium and of eosinophilic crystals in inflammatory conditions. The Ym1 protein was mainly localized to the cytoplasm of the transitional epithelium, infiltrated cells, and eosinophilic crystals in diseased ureters.We determined that the primary cause of hydronephrosis in F2 mice was ureteritis mediated by the local hyperimmune response with malformation of the transitional epithelium. Our data provide a novel molecular pathogenesis for elucidating causes of aseptic inflammation in human upper urinary tracts.  相似文献   
93.
The anaerobic Gram-negative bacterium Porphyromonas gingivalis is a major pathogen in severe forms of periodontal disease and refractory periapical perodontitis. We have recently found that P. gingivalis has a novel secretion system named the Por secretion system (PorSS), which is responsible for secretion of major extracellular proteinases, Arg-gingipains (Rgps) and Lys-gingipain. These proteinases contain conserved C-terminal domains (CTDs) in their C-termini. Hemin-binding protein 35 (HBP35), which is one of the outer membrane proteins of P. gingivalis and contributes to its haem utilization, also contains a CTD, suggesting that HBP35 is translocated to the cell surface via the PorSS. In this study, immunoblot analysis of P. gingivalis mutants deficient in the PorSS or in the biosynthesis of anionic polysaccharide-lipopolysaccharide (A-LPS) revealed that HBP35 is translocated to the cell surface via the PorSS and is glycosylated with A-LPS. From deletion analysis with a GFP-CTD[HBP35] green fluorescent protein fusion, the C-terminal 22 amino acid residues of CTD[HBP35] were found to be required for cell surface translocation and glycosylation. The GFP-CTD fusion study also revealed that the CTDs of CPG70, peptidylarginine deiminase, P27 and RgpB play roles in PorSS-dependent translocation and glycosylation. However, CTD-region peptides were not found in samples of glycosylated HBP35 protein by peptide map fingerprinting analysis, and antibodies against CTD-regions peptides did not react with glycosylated HBP35 protein. These results suggest both that the CTD region functions as a recognition signal for the PorSS and that glycosylation of CTD proteins occurs after removal of the CTD region. Rabbits were used for making antisera against bacterial proteins in this study.  相似文献   
94.
Protein ubiquitination is a post-translational protein modification that regulates many biological conditions. Trip12 is a HECT-type E3 ubiquitin ligase that ubiquitinates ARF and APP-BP1. However, the significance of Trip12 in vivo is largely unknown. Here we show that the ubiquitin ligase activity of Trip12 is indispensable for mouse embryogenesis. A homozygous mutation in Trip12 (Trip12(mt/mt)) that disrupts the ubiquitin ligase activity resulted in embryonic lethality in the middle stage of development. Trip12(mt/mt) embryos exhibited growth arrest and increased expression of the negative cell cycle regulator p16. In contrast, Trip12(mt/mt) ES cells were viable. They had decreased proliferation, but maintained both the undifferentiated state and the ability to differentiate. Trip12(mt/mt) ES cells had increased levels of the BAF57 protein (a component of the SWI/SNF chromatin remodeling complex) and altered gene expression patterns. These data suggest that Trip12 is involved in global gene expression and plays an important role in mouse development.  相似文献   
95.
The angiotensin-converting enzyme (ACE) is a key regulator of blood pressure. It is known to cleave small peptides, such as angiotensin I and bradykinin and changes their biological activities, leading to upregulation of blood pressure. Here we describe a new activity for ACE: a glycosylphosphatidylinositol (GPI)-anchored protein releasing activity (GPIase activity). Unlike its peptidase activity, GPIase activity is weakly inhibited by the tightly binding ACE inhibitor and not inactivated by substitutions of core amino acid residues for the peptidase activity, suggesting that the active site elements for GPIase differ from those for peptidase activity. ACE shed various GPI-anchored proteins from the cell surface, and the process was accelerated by the lipid raft disruptor filipin. The released products carried portions of the GPI anchor, indicating cleavage within the GPI moiety. Further analysis by high-performance liquid chromatography-mass spectrometry predicted the cleavage site at the mannose-mannose linkage. GPI-anchored proteins such as TESP5 and PH-20 were released from the sperm membrane of wild-type mice but not in Ace knockout sperm in vivo. Moreover, peptidase-inactivated E414D mutant ACE and also PI-PLC rescued the egg-binding deficiency of Ace knockout sperms, implying that ACE plays a crucial role in fertilization through this activity.  相似文献   
96.
A new class of benzimidazole-5-sulfonamides has been identified as nonpeptide luteinizing hormone-releasing hormone (LHRH) antagonists. Initial structure-activity relationships are presented resulting in compounds 19 and 28 with submicromolar dual functional activity on human and rat receptors.  相似文献   
97.
98.
Studies on the inhibitory mechanism of acetogenins, the most potent inhibitors of mitochondrial complex I (NADH-ubiquinone oxidoreductase), are useful for elucidating the structural and functional features of the terminal electron transfer step of this enzyme. Previous studies of the structure-activity relationship revealed that except for the alkyl spacer linking the two toxophores (i.e., the hydroxylated THF and the gamma-lactone rings), none of the multiple functional groups of these inhibitors is essential for potent inhibition. To elucidate the function of the alkyl spacer, two sets of systematically selected analogues were synthesized. First, the length of the spacer was varied widely. Second, the local flexibility of the spacer was specifically reduced by introducing multiple bond(s) into different regions of the spacer. The optimal length of the spacer for inhibition was approximately 13 carbon atoms. The decrease in the strength of the inhibitory effect caused by elongating the spacer from 13 carbons was much more drastic than that caused by shortening. Local flexibility in a specific region of the spacer was not important for the inhibition. These observations indicate that the active conformation of the spacer is not an extended form, and is not necessarily restricted to a certain rigid shape. Moreover, an analogue in which a spacer covering 10 carbon atoms was hardened into a rodlike shape still maintained a potent inhibitory effect. Our results strongly suggest that the spacer portion is free from steric congestion arising from the putative binding site probably because there is no cavity-like binding site for the spacer portion. The manner of acetogenin binding to the enzyme may not be explained by a simple "key and keyhole" analogy.  相似文献   
99.
Insulin-like growth factor-I (IGF-I) receptors and insulin receptors belong to the same subfamily of receptor tyrosine kinases and share a similar set of intracellular signaling pathways, despite their distinct biological actions. In the present study, we evaluated T cell death-associated gene 51 (TDAG51), which we previously identified by cDNA microarray analysis as a gene specifically induced by IGF-I. We characterized the signaling pathways by which IGF-I induces TDAG51 gene expression and the functional role of TDAG51 in IGF-I signaling in NIH-3T3 (NWTb3) cells, which overexpress the human IGF-I receptor. Treatment with IGF-I increased TDAG51 mRNA and protein levels in NWTb3 cells. This effect of IGF-I was specifically mediated by the IGF-IR, because IGF-I did not induce TDAG51 expression in NIH-3T3 cells overexpressing a dominant-negative IGF-I receptor. Through the use of specific inhibitors of various protein kinases, we found that IGF-I induced TDAG51 expression via the p38 MAPK pathway. The ERK, JNK, and phosphatidylinositol 3-kinase pathways were not involved in IGF-I-induced regulation of TDAG51. To assess the role of TDAG51 in IGF-I signaling, we used small interfering RNA (siRNA) expression vectors directed at two different target sites to reduce the level of TDAG51 protein. In cells expressing these siRNA vectors, TDAG51 protein levels were decreased by 75-80%. Furthermore, TDAG51 siRNA expression abolished the ability of IGF-I to rescue cells from serum starvation-induced apoptosis. These findings suggest that TDAG51 plays an important role in the anti-apoptotic effects of IGF-I.  相似文献   
100.
To better understand the control of T helper (TH) 1-expressed genes, we compared and contrasted acetylation and expression for three key genes, IFNG, TBET, and IL18RAP and found them to be distinctly regulated. The TBET and the IFNG genes, but not the IL18RAP gene, showed preferential acetylation of histones H3 and H4 during TH1 differentiation. Analysis of acetylation of specific histone residues revealed that H3(Lys-9), H4(Lys-8), and H4(Lys-12) were preferentially modified in TH1 cells, suggesting a possible contribution of acetylation of these residues for induction of these genes. On the other hand, the acetylation of IL18RAP gene occurred both in TH1 and TH2 cells the similar kinetics and on the same with residues, demonstrating that selective histone acetylation was not universally the case for all TH1-expressed genes. Histone H3 acetylation of IFNG and TBET genes occurred with different kinetics, however, and was distinctively regulated by cytokines. Interleukin (IL)-12 and IL-18 enhanced the histone acetylation of the IFNG gene. By contrast, histone acetylation of the TBET gene was markedly suppressed by IL-4, whereas IL-12 and IL-18 had only modest effects suggesting that histone acetylation during TH1 differentiation is a process that is regulated by various factors at multiple levels. By treating Th2 cells with a histone deacetylase inhibitor, we restored histone acetylation of the IFNG and TBET genes, but it did not fully restore their expression in TH2 cells, again suggesting that histone acetylation explains one but not all the aspects of TH1-specific gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号